

Intermediate Programming Methodologies in C++

CIS22B

Joe Bentley

DeAnzaCollege

Computer Information System

July 10, 2020

Contents
Review ...2

CIS22A Basics ...2
An Old CIS22A Midterm.. 2

Warning – stay away from these ... 4

File I/O ...4

File streams ... 4

Input/Output classes .. 4

Opening a file .. 5

Checking for a successful open... 5

Closing a file ... 7

Reading from a file ... 8

Writing to a file ... 11

What is newline? ... 16

Detecting EOF .. 21

Functions ..25
Terminology .. 25

Pass by value vs. pass by reference .. 25

Return type vs. return value .. 28

Default arguments ... 29

Arrays ...31
Declaration .. 31

How is an array stored in memory? .. 32

Indexing .. 33

Traversing an array ... 34

Passing an array to a function ... 35

Passing an array element to a function ... 37

Sorting and Searching an Array ...39
Bubble Sort ... 39

Selection Sort .. 42

Insertion Sort ... 44

Sequential Search .. 46

Binary Search .. 46

Multidimensional Arrays ...49
Two-Dimensional Arrays...50

Declaration and Initialization .. 50

How is a 2D array stored in memory? .. 50

2D Arrays and Functions .. 52

CIS22B Course Notes REVIEW 2

Review

CIS22A Basics

An Old CIS22A Midterm

1. Write a program that calculates the tax on an item purchased. You should prompt the user for cost
of the item. Your program should make use of a named constant for the tax. This constant should
represent a tax rate of 7%.

Program execution:

What is the cost of the item? 100.00 // User input is 100.00

The tax is $7.00 // Multiple the cost by the tax rate

2. Write a function definition for a function called getAge. The function prompts the user for their age

and then returns it.

3. Write a function prototype for the function that you defined in problem 2.

4. Insert into the following main() an appropriate call to the function that you defined in problem 2.

int main()

{

 _________________ // function call

 return 0;

}

5. Which of the following is NOT a valid identifier? Enter letter -> __________

A. cout
B. Cout
C. _55
D. 55_
E. end

6. Assume the following declaration is made:

double A = 9876.543;

Write one cout statement that prints the number A two times with exactly the following format.

∆∆∆9877∆∆∆∆9876.543 // Note: each ∆ represents 1 space

__

CIS22B Course Notes REVIEW 3

7. Assume the following declaration:

int M = 12345;

Write one statement that will print M three times like this:

12345 45 12

__

8. What is the output from each cout statement?

cout << (9 / 6 + 9 * 6); ______

cout << static_cast<double>(2 / 5 + 5 * 2); ______

cout << 100.0/(2 + 8.0 * 6); ______

cout << (6 / 9 ? 6 : 9) ______

cout << rand() % 10 / 10 * 10 + 10 - 10; ______

9. Assuming a = 3, b = 4, c = 5, and d = 6, what is the value of each cout statement?

cout << d++ / --b; ______

cout << (a + c) % a - c; ______

cout << static_cast<char>(c * c * c - a * a * a); ______

cout << ++a % c++; ______

10. Write a function that prints a day of the week. The function should take an int argument. It must

use a switch.
If the argument is 1, then the function should print Sunday.
If the argument is 2, then the function should print Monday.
If the argument is 3, then the function should print Tuesday.
…
If the argument is 7, then the function should print Saturday.
If the argument is not between 1 and 7, it should print “error”

11. Write a program that prints multiples of 8 that are less than 9999. The output should look like this:

8

16

24

32

…

9992

CIS22B Course Notes REVIEW 4

Warning – stay away from these

C-style casts

float fraction;

fraction = (float) 1 / 2; // C-style cast - BAD

fraction = static_cast<float>(1) / 2; // C++ cast - GOOD

C standard header files

Do not use these header files

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <string.h>

#include <stdio.h>

Use these header files

#include <cstdlib>

#include <cmath>

#include <ctime>

#include <cstring>

#include <iostream>

Variable length arrays

int size = 5;

int array[size]; // variable length array - BAD

const int size = 5;

int array[size]; // fixed length array - GOOD

File I/O

File streams

A file stream represents data to be written to a file (insertion) or read from a file (extraction).

Interacting with a file stream is how file I/O is performed. Extraction, or file input, is the result

of copying data from a file into computer memory. Insertion, or file output, is the result of

copying data from computer memory into a file.

Input/Output classes

CIS22B Course Notes REVIEW 5

class Purpose

ios Provides functions and characteristics that are common to both input and output

ostream Output to the screen (or monitor or console). cout is an ostream object. variable)

ofstream Output to a file. The ofstream class inherits functions from the ostream class.

istream Input from the keyboard. cin is an istream object.

ifstream Input from a file. The ifstream class inherits functions from the istream class.

fstream File input and output. Inherits functions from the ifstream and ofstream.

You can access the ostream class and istream class by including the <iostream> header file, and

the ofstream class and ifstream class by including the <fstream> header file.

Opening a file

// Declare a stream object

ifstream fin;

ofstream fout;

// open a file associated with a file stream object

fin.open(“inputfile.txt”);

fout.open(“outputfile.txt”);

Opening a file using a constructor

// Declare a stream object and open a file at the same time

ifstream fin(“input.txt”);

ofstream fout(“output.txt”);

Checking for a successful open

There are several approaches for checking whether or not a file is successfully opened.

Checking the file open is almost always a good idea. There are many reasons why a file many

not be opened, such as:

The file name may be misspelled (and hence, does not exist).

The file name may reference a disk drive that does not exist.

The file name may reference a directory path that does not exist.

A referenced device may not exist.

The disk drive may be full.

The drive destination may be defective.

Functions

ios::good

returns true if the file is open and there are no errors in the file stream

CIS22B Course Notes REVIEW 6

ios::fail

returns true if the file is not open or there are errors in the file stream

ios::bad

returns true if there are errors in the file stream. Do not use the bad function to test a file open.

ios::operator!

returns true if the file is not open or there are errors in the file stream

ifstream::is_open / ofstream::is_open / fstream::is_open

returns true if the file is open

Example 1-1 – File open check

1 #include <iostream>

2 #include <fstream>

3 #include <cstdlib> // for exit()

4 using namespace std;

5

6 int main()

7 {

8 cout << boolalpha;

9 ofstream fout("c:/temp/goodfile");

10 cout << "fout.good()=" << fout.good() << endl;

11 cout << "fout.fail()=" <<fout.fail() << endl;

12 cout << "fout.bad()=" << fout.bad() << endl;

13 cout << "fout.is_open()=" <<fout.is_open() << endl;

14 cout << "!fout=" <<!fout << endl << endl;

15

16 ifstream fin("c:/temp/fakefile");

17 cout << "fin.good()=" << fin.good() << endl;

18 cout << "fin.fail()=" <<fin.fail() << endl;

19 cout << "fin.bad()=" << fin.bad() << endl;

20 cout << "fin.is_open()=" <<fin.is_open() << endl;

21 cout << "!fin=" <<!fin << endl << endl;

22

23 // Check for file opens

24 if (fout.is_open())

25 {

26 // ...

27 }

28 if (fout.fail())

29 {

30 cerr << "Unable to open file c:/temp/goodfile" << endl;

CIS22B Course Notes REVIEW 7

31 exit(1);

32 }

33 if (!fin)

34 {

35 cerr << "Unable to open file c:/temp/fakefile" << endl;

36 exit(2);

37 }

38 }

****** Output ******

fout.good()=true

fout.fail()=false

fout.bad()=false

fout.is_open()=true

!fout=false

fin.good()=false

fin.fail()=true

fin.bad()=false

fin.is_open()=false

!fin=true

Unable to open file c:/temp/fakefile

Closing a file

Use the ifstream::close() / ofstream::close() / fstream::close() to close a file. Note, the stream

destructor will automatically close a file. That is, when a stream object goes out of scope, the

file is automatically closed.

Example

ifstream fin(“inputfile.txt”);

…

// read from the input file

…

fin.close(); // file is closed

…

void somefunction()

{

 ofstream fout(“outputfile.txt”);

 …

 // write to output file

 …

}  output file is closed here

CIS22B Course Notes REVIEW 8

Reading from a file

istream::operator>>

Reads from a file into built-in (or primitive) types or into string objects. Whitespace1 is a

separator or delimiter for each value read.

istream::get()

Reads from a file into a null-terminated char array (c-string). The istream::get function is

overloaded.

(1) int get();

(2) istream& get(char& c);

(3) istream& get(char* s, streamsize n);

(4) istream& get(char* s, streamsize n, char delim);

(1) Reads from the input file stream and returns the ascii code of the character (byte) read.

(2) Reads from the input file stream into a char

(3) Reads from the input file stream into a char array. A maximum of n-1 bytes are read. A

newline (\n) acts as a delimiter and ends the read. The newline is not read and not stored in

the char array. The next read operator will begin at the newline character.

(4) Reads from the input file stream into a char array. A maximum of n-1 bytes are read. The

delim character acts as a delimiter and ends the read. The delimiter is not read and not stored

in the char array. The next read operator will begin at the delimiter. If the delimiter

character is not encountered in the specified number of bytes, n, then an error is introduced

into the stream.

istream::getline()

Reads from a file into a null-terminated char array (c-string). The getline function is used to read

an entire line from a file into a char array. The istream::getline function is overloaded.

(1) istream& getline(char* s, streamsize n);

(2) istream& getline(char* s, streamsize n, char delim);

(1) Reads from the input file stream into a char array. A maximum of n-1 bytes are read. A

newline (\n) acts as a delimiter and ends the read. The newline is read and not stored in the

char array. The next read operator will begin at character (byte) after the newline

character.

(2) Reads from the input file stream into a char array. A maximum of n-1 bytes are read. The

delim character acts as a delimiter and ends the read. The delimiter is read and not stored in

1 Whitespace is a blank space, a newline, or a tab character

CIS22B Course Notes REVIEW 9

the char array. The next read operator will begin at the character after the delimiter. If

the delimiter character is not encountered in the specified number of bytes, n, then an error is

introduced into the stream.

std::getline(string)

Reads from a file into a string. The istream::getline function is overloaded.

(1) istream& getline(istream& is, string& str, char delimiter);

(2) istream& getline(istream& is, string& str);

(1) Reads from the input file stream into a string. The file contents are read until the delimiter

character is found. The string, str, is automatically sized to hold the value read from the

input file. The delimiter is read but not stored. The next read operator will begin at the

character after the delimiter.

(2) Reads from the input file stream into a string. This syntax reads a line from an input file. It

is probably the most common approach for reading string input from a file. The file contents

are read until a newline character is found. The string, str, is automatically sized to hold the

value read from the input file. The delimiter is read but not stored. The next read operator

will begin at the character after the newline.

CIS22B Course Notes REVIEW 10

Example 1-2 – Reading from a file

veryniceday.txt

1 #include <iostream>

2 #include <fstream>

3 #include <string>

4 #include <cstdlib> // for exit()

5 using namespace std;

6

7 int main()

8 {

9 const string filename = "veryniceday.txt";

10 string buffer;

11 char cstring[80];

12 char ch;

13 ifstream fin(filename);

14 if (!fin)

15 {

16 cerr << "Unable to open file " << filename << endl;

17 exit(1);

18 }

19

20 while (fin >> buffer)

21 cout << '/' << buffer;

22 cout << endl << "-------------------------------\n";

23

24 fin.clear(); // reset EOF state

25 fin.seekg(0); // reposition to the top of the file

26

27 while (getline(fin, buffer))

28 cout << buffer << endl;

29 cout << endl << "-------------------------------\n";

30

31 // Differentiate get and getline

32 fin.clear(); // reset EOF state

33 fin.seekg(0); // reposition to the top of the file

34 fin.get(cstring,sizeof(buffer),'e');

35 cout << "cstring=" << cstring << endl;

36 fin.get(ch);

37 cout << "ch=" << ch << endl;

38 cout << "fin.get()=" << fin.get() << endl;

39 cout << endl << "-------------------------------\n";

40

Have a

very nice

day

CIS22B Course Notes REVIEW 11

41 fin.seekg(0); // reposition to the top of the file

42 fin.getline(cstring,sizeof(buffer),'e');

43 cout << "cstring=" << cstring << endl;

44 fin.get(ch);

45 cout << "ch=" << ch << endl;

46 cout << "fin.get()=" << fin.get() << endl;

47 }

****** Output ******

/Have/a/very/nice/day

Have a

very nice

day

cstring=Hav

ch=e

fin.get()=32

cstring=Hav

ch=

fin.get()=97

Writing to a file

<< operator

Writes built-in (or primitive) types or string objects into a file.

Manipulators

Manipulators are special functions designed to be used with the << and >> operators for input

and output. Manipulators have the same effect on file streams that they have on input and output

streams (cin and cout).

The iomanip header file

The iomanip header file is required for parameterized manipulators. A parameterized

manipulator is one that uses are argument, such as setw or setfill.

Standard manipulators

Manipulator I/O Purpose

CIS22B Course Notes REVIEW 12

Independent Flags Turns Setting On

boolalpha I/O sets boolalpha flag

showbase O sets showbase flag

showpoint O sets showpoint flag

showpos O sets showpos flag

skipws I sets skipws flag

unitbuf O sets unitbuf flag

uppercase O sets uppercase flag

Independent Flags Turns Setting Off

noboolalpha I/O clears boolalpha flag

noshowbase O clears showbase flag

noshowpoint O clears showpoint flag

noshowpos O clears showpos flag

noskipws I clears skipws flag

nounitbuf O clears unitbuf flag

nouppercase O clears uppercase flag

Numeric Base Flags

dec I/O sets dec flag for i/o of integers, clears oct,hex

hex I/O sets hex flag for i/o of integers, clears dec,oct

oct I/O sets oct flag for i/o of integers, clears dec,hex

hexfloat (C++11) I/O sets hexadecimal floating point formatting

defaultfloat (C++11) I/O clears the float field formats

Floating Point Flags

fixed O sets fixed flag

scientific O sets scientific flag

Adjustment Flags

internal O sets internal flag

left O sets left flag

right O sets right flag

Input Only

ws I extracts whitespace

Output Only

endl O inserts a newline and flushes output stream

ends O inserts a null

flush O flushes stream

Parameterized Manipulators(these require the iomanip header file)

resetiosflags(ios_base::fmtflags mask) I/O clears format flags specified by mask

setbase(int base) I/O sets integer base (8, 10, or 16)

setfill(char_type ch) O sets the fill character to ch

setiosflags(ios::base::fmtflags mask) I/O sets format flags to mask value

setprecision(int p) O sets precision of floating point numbers

setw(int w) O sets output field width to w

get_money (C++11) I parses a monetary value

put_money (C++11) O formats and outputs a monetary value

CIS22B Course Notes REVIEW 13

get_time (C++11) I parses a date/time value

put_time (C++11) O formats and outputs a date/time value

quoted (C++14) I/O Allows input/output of quoted text

ostream::put()

Writes a single char into a file.

ostream& put (char c);

CIS22B Course Notes REVIEW 14

Example 1-3 – Writing to a file

1 #include <iostream>

2 #include <fstream>

3 #include <string>

4 #include <cstdlib> // for exit()

5 #include <iomanip> // for setw, setfill, setprecision

6 using namespace std;

7

8 int main()

9 {

10 const string filename = "output.txt";

11 string haveaniceday = "have a nice day";

12 string have = "have";

13 string a = "a";

14 string nice = "nice";

15 string day = "day";

16

17 ofstream fout(filename);

18 if (!fout)

19 {

20 cerr << "Unable to open output file " << filename << endl;

21 exit(1);

22 }

23

24 fout << haveaniceday << endl;

25 fout << have << a << nice << day << endl;

26

27 // setw

28 fout << setw(3) << have << a << nice << day << endl;

29 fout << setw(6) << have << a << nice << day << endl;

30 fout << setw(6) << have << setw(6) << a << setw(6) << nice

31 << setw(6) << day << endl;

32

33 // left and setw

34 fout << left << setw(6) << have << setw(6) << a << setw(6)

35 << nice << setw(6) << day << endl << endl;

36

37 // setprecision

38 double pi = 3.141592654;

39

40 auto saveprec = fout.precision();

41 fout << "default precision for fout = " << saveprec << endl;

42

43 fout << pi << ' ' << setprecision(4) << pi << endl;

44

45 // setprecision and fixed

46 fout << setprecision(saveprecision); // reset precision

47 fout << pi << ' ' << setprecision(4) << fixed << pi << endl;

48

49 // setfill and setw

CIS22B Course Notes REVIEW 15

50 int number = 123;

51 fout << right;

52 fout << endl << number << setw(5) << number << endl;

53 fout << setfill('0');

54 fout << number << setw(5) << number << endl;

55 fout << setw(16) << pi << endl;

56 fout << left << setw(16) << pi << endl;

57 fout << setfill(' ');

58 fout << setw(16) << pi << endl;

59 fout << right << setw(16) << pi << endl;

60 }

Output file: output.txt

Explanation

Line 25: 4 string values are written to the output file with no spaces separating each value.

Line 28: The setw(3) only applies to the first string written. Since the first string value is 4

characters long, the 3 argument is of no consequence. Note, the setw manipulator is not used

to insert spaces in between values.

Line 29: The setw(6) only applies to the first string written. The first string value, “have”, is

written with a width of 6 and is right justified in that field. The remaining 3 strings are written

using the minimum width necessary.

Lines 30 & 31: There is setw manipulator in front of each string value, so each string is written

into the file using a width of 6. Note, each value is right justified in the field of width 6.

Line 34: A left manipulator is inserted in front of the first string, so all 4 string values are written

left justified in a field of width 6.

Line 40: The default precision setting is saved into a variable, saveprec. This is so that it can be

used again later to reset the output precision to the original default setting. The keyword, auto, is

have a nice day

haveaniceday

haveaniceday

 haveaniceday

 have a nice day

have a nice day

default precision for cout = 6

3.14159 3.142

3.14159 3.1416

123 123

12300123

00000000003.1416

3.14160000000000

3.1416

 3.1416

CIS22B Course Notes REVIEW 16

used here to declare the type for saveprec. This allows the compiler to determine the type and

the user doesn’t have to the know the type returned by the precision function. The auto feature

was added in C++11.

Line 41: The default precision setting value is displayed.

Line 43: The value is pi is displayed twice, first using the default precision, then using precision

4. Note, precision 4 means 4 significant digits.

Line 46: The default precision setting is set back to its original value.

Line 47: pi is again displayed twice, but the fixed manipulator is inserted in front of the second

value to be output. Now, there is a different interpretation of setprecision(4). This now means

display with 4 decimal places.

Line 51: The right manipulator is inserted into the file output stream, so values inserted into the

stream will be right justified in the field.

Line 52: The int, number, is written twice into the output file. The first time with a default width

and the second time with a width of 5. Note, the 2 extra spaces in front of the second value,

caused by the setw(5).

Line 53: The fill character is set to ‘0’.

Line 54: The int is again displayed twice. This time, the 2 extra spaces resulting from the

setw(5) are filled with ‘0’.

Line 55: The floating point value, pi, is written into the file using a width of 16. Notice, the right

justification and the presence of the fill character.

Line 56: Again, pi is displayed in a width of 16 with the fill character, but this time left justified.

Line 57: The fill character is reset to its default value, a blank space.

Lines 58 and 59: pi is again printed using a setw(16), but the fill character is now a blank space.

What is newline?

The newline character, or endline is used to represent the end of a line of text. By now, you

should have experience with this. You may have used the endl manipulator or \n to represent a

newline. Your purpose was to simply end a line of output. However, in reading a file, the

newline character can present unexpected problems. Depending on how the input file was

created, the newline character may occupy either one or two bytes. The newline character may

be represented as only the line feed control character (ascii code 10) or as the carriage return and

line feed control characters (ascii codes 13 and 10). You’ll see evidence of this in the following

example. Because, you are not always the creator of your input file and it may come from a

source that you did not expect, you’ll need to learn to write code to adapt to either situation.

Example 1-4 – What is a newline?

This example demonstrates the newline character by first writing a text file containing two

newlines. That output file is then reopened as an input file, first as a text file and then as a binary

file. You should note the different storage and the different processing of the same code with 4

different compilers.

1 #include <iostream>

2 #include <fstream>

CIS22B Course Notes REVIEW 17

3 #include <string>

4 #include <cstdlib> // for exit()

5 #include <iomanip> // for setw

6 using namespace std;

7

8 int main()

9 {

10 const string filename = "output.txt";

11 streampos loc;

12

13 ofstream fout(filename);

14 if (!fout)

15 {

16 cerr << "Unable to open output file " << filename << endl;

17 exit(1);

18 }

19

20 fout << "ABC\n";

21 fout << "DEF\n";

22 fout.close();

23

24 ifstream fin(filename);

25 if (!fin)

26 {

27 cerr << "Unable to open input file " << filename << endl;

28 exit(2);

29 }

30

31 // determine file size

32 fin.seekg(0, ios::end);

33 loc = fin.tellg();

34 cout << "File size = " << loc << endl;

35

36 fin.seekg(0);

37

38 // display byte location and each character in the file

39 while (!fin.eof())

40 {

41 loc = fin.tellg();

42 cout << loc << " " << fin.get() << endl;

43 }

44 cout << "---------------------" << endl;

45

46 // close the file & reopen in binary mode

47 fin.clear();

48 fin.close();

49 fin.open(filename, ios::binary);

50 if (!fin)

51 {

52 cerr << "Unable to open binary file " << filename << endl;

53 exit(3);

CIS22B Course Notes REVIEW 18

54 }

55

56 // display byte location and each character in the file

57 while (!fin.eof())

58 {

59 loc = fin.tellg();

60 cout << loc << " " << fin.get() << endl;

61 }

62 }

****** Code::Blocks 17.12 on Windows ******

File size = 10

0 65

3 66

4 67

5 10

6 68

7 69

8 70

9 10

10 -1

0 65

1 66

2 67

3 13

4 10

5 68

6 69

7 70

8 13

9 10

10 -1

****** Microsoft Visual Studio 2017 ******

File size = 10

0 65

1 66

2 67

3 10

5 68

6 69

7 70

8 10

10 -1

0 65

1 66

CIS22B Course Notes REVIEW 19

2 67

3 13

4 10

5 68

6 69

7 70

8 13

9 10

10 -1

****** Linux gnu compiler g++ 8.1.0 / Xcode 9.4 on Mac ******

File size = 8

0 65

1 66

2 67

3 10

4 68

5 69

6 70

7 10

8 -1

0 65

1 66

2 67

3 10

4 68

5 69

6 70

7 10

8 -1

Explanation

Line 11: streampos is an integer type that is used to represent a byte location in a file.

Lines 20 and 21: two lines are written into the output file.

Line 22: close the output file

Line 24: open the output file as an input file

Line 32: position to the end of the file (the last byte in the file)

Line 33: save the byte position in the file into the variable, loc.

Line 34: display the byte position – that’s the file size.

Line 36: reposition in the file to the beginning of the file

Lines 39-43: in a loop, display the file position (byte) and the character (ascii code) at that

position

Line 47: clear the input file stream state – it’s EOF state

Line 48: close the file

Line 49: reopen the file in binary mode

CIS22B Course Notes REVIEW 20

Lines 57-61: in a loop, display the file position (byte) and the character (ascii code) at that

position. Note the extra carriage return character (ascii code 13) in the PC compilers.

Example 1-5 – Writing to a file

Input File

  This file was created as a Windows text file

1 #include <iostream>

2 #include <fstream>

3 #include <string>

4 #include <cstdlib> // for exit()

5 using namespace std;

6

7 void readFile(const string& filename);

8

9 int main()

10 {

11 readFile("windows_input.txt");

12 }

13

14 void readFile(const string& filename)

15 {

16 ifstream fin(filename);

17 if (!fin)

18 {

19 cerr << "Unable to open input file " << filename << endl;

20 exit(1);

21 }

22 string buffer;

23 cout << "Reading file: " << filename << endl;

24 while (!fin.eof())

25 {

26 getline(fin,buffer);

27 cout << buffer;

28 }

29 }

****** Output: Windows: Code::Blocks ******

Reading file: windows_input.txt

This is line 1This is line 2This is line 3

****** Output: Linux gnu compiler ******

This is line 1

This is line 2

This is line 3

CIS22B Course Notes REVIEW 21

Reading file: windows_input.txt

****** Output: Mac Xcode / Mac Eclipse ******

Reading file: windows_input.txt

This is line 1

This is line 2

This is line 3

****** Output: Mac Linux gnu compiler ******

Reading file: windows_input.txt

Comments

This example illustrates how the type of a newline can affect program processing. It also

demonstrates that the getline function may work differently on different compilers. Since the

input file was created as a Windows text file, its newline consists of the two-byte carriage return

and line feed (\r and \n). The getline function on Windows compilers reads up to the newline

character(s) and consumes them. Rather they are not stored in the getline string buffer. The

getline function on Mac and Linux compilers reads up to the \n character (and ignores it), and

stores the \r character in the getline string buffer. The \r character is the carriage return

character. It erases any data on a line and starts the line over again. That is why the output is

missing on the gnu compilers. The Windows (Code::Blocks) compiler shows the 3 file lines

concatenated together in the output, because the \r and \n are removed. For the Mac Xcode and

Eclipse compilers the file output appears on 3 lines because the \r (line feed) is left in the buffer.

So, what is the point? The source of an input file may seriously impact how your file is

processed. Later, you’ll see techniques to write code to handle either type of newline in a file.

Your goal should be to write code that can handle either situation.

Detecting EOF

The presence or absence of a newline character at the end of a file may affect the file processing.

Example 1-6 – Detecting EOF(1)

Input Files

 colors1.txt

 colors2.txt

red

white

blue  there is a newline after the last line in the file

CIS22B Course Notes REVIEW 22

1 #include <iostream>

2 #include <fstream>

3 #include <cstdlib>

4 #include <string>

5 using namespace std;

6

7 void readFile(const string& filename);

8

9 int main()

10 {

11 readFile("colors1.txt");

12 readFile("colors2.txt");

13 }

14

15 void readFile(const string& filename)

16 {

17 ifstream fin(filename.c_str());

18 string buffer;

19 if (!fin)

20 {

21 cerr << "Can't open " << filename << endl;

22 exit(1);

23 }

24 while (!fin.eof())

25 {

26 fin >> buffer;

27 cout << buffer << endl;

28 }

29 cout << "End of file" << endl;

30 fin.close();

31 }

****** Output ******

red

white

blue

blue

End of file

red

white

blue

End of file

red

white

blue  there is no newline after the last line in the file

CIS22B Course Notes REVIEW 23

Explanation

Notice the extra occurrence of blue in the output for the first input file. Why does that happen?

Look at the while loop (lines 24-28) – that is where the file processing occurs. The while loop

condition specifies that the loop processing continues until EOF is read. With the first input file

the third record, “blue”, is successfully read and displayed, so the loop continues. An attempt to

read the 4th record is made (line 26). That read fails (EOF error), but we aren’t checking for EOF

yet, so processing continues to line 27. Even though the read operation failed, the previous

“blue” is still in the input buffer. Hence, it displays the extra “blue” (line 27). Next, we are back

at the top of the while loop. This time, with the attempted read of the fourth record, EOF is

detected and the while loop ends.

Note, that the second input file, without the newline at the end, does not exhibit this problem.

So, what is the point? An input text file may or may not contain a newline as the last character in

the file. You might not be the one that created the input file, so the location of EOF may be

beyond your control. You will want to learn to write code to handle either situation.

Example 1-7 – Detecting EOF(2)

Input Files

 numbers1.txt

 numbers2.txt

1 #include <iostream>

2 #include <fstream>

3 #include <cstdlib>

4 #include <string>

5 using namespace std;

6

7 int sumOf2ndColumnInFile(const string& filename);

8

9 int main()

10 {

11 cout << sumOf2ndColumnInFile("numbers1.txt") << endl;

12 cout << sumOf2ndColumnInFile("numbers2.txt") << endl;

13 }

 1 2 3

 4 5 6

 7 8 9  there is a newline after the last line in the file

 1 2 3

 4 5 6

 7 8 9  there is no newline after the last line in the file

CIS22B Course Notes REVIEW 24

14

15 int sumOf2ndColumnInFile(const string& filename)

16 {

17 ifstream fin(filename.c_str());

18 int sum = 0, number, dummy;

19 if (!fin)

20 {

21 cerr << "Can't open " << filename << endl;

22 exit(1);

23 }

24 while (!fin.eof())

25 {

26 fin >> dummy >> number >> dummy;

27 sum += number;

28 }

29 return sum;

30 }

****** Output ******

23

15

Explanation

This example is supposed to add the second column of numbers in the file. The two input files

differ only by the presence or absence of the newline at the end of the file. The correct answer,

of course, is 15. Why does the first input file yield an answer of 23? This is really the same

problem that occurs in the last example. The EOF is not checked until after an attempt is made

to read a 4th line in the file.

CIS22B Course Notes REVIEW 25

Functions

Terminology

Function definition

Function declaration

Function call

Function arguments

Pass by value

Pass by reference

Reference to const

Pass by value vs. pass by reference

// function declarations or prototypes

void funk1();

void funk2(int arg);

void funk3(int& arg);

void funk4(const int& arg);

int main()

{

 int q = 19;

 // function calls

 funk1();

 funk2(7);

 funk3(q);

 funk4(q);

}

// function definitions

void funk1() // function heading

{

 … // body of function

}

void funk2(int a) // pass by value

{

 …

}

void funk3(int& ref) // pass by reference

{

 …

}

void funk4(const int& cref) // pass reference to const

{

 // cref = 76; // ERROR

 …

}

CIS22B Course Notes REVIEW 26

Use pass by reference when you want the function to effect a change in the argument value. Use

pass by value when the function does not need to permanently change the argument value.

Local variables

The term, local variable, refers to a variable that is declared inside a function. A local variable

may only be accessed inside the function in which they are declared.

Function arguments, when passed by value, are also considered local to a function. A local

variable means that the variable’s scope is the function.

// function declarations or prototypes

void funk1(int pbv);

void funk2(int& pbr);

int main()

{

 int q = 19;

 funk1(q);

 cout << q << endl; // prints 19

 funk2(q);

 cout << q << endl; // prints 6

}

void funk1(int arg) // pass by value

{

 arg = 6;

}

void funk2(int& arg) // pass by reference

{

 arg = 6;

}

void funk(void);

int main()

{

 funk();

 // cout << z << endl; // ERROR

}

void funk()

{

 int z = 7; // z is a local variable

}

CIS22B Course Notes REVIEW 27

Local static variable

When a non-static variable is local to a function, then it is defined each time the function is

called. A local static variable is a local variable that is defined only one time during the

execution of a program. The scope of a local static variable, like any local variable, is within the

function.

Example 1-8 – Local static variable

1 #include <iostream>

2 using namespace std;

3

4 void funk1();

5 void funk2();

6

7 int main()

8 {

9 funk1();

10 funk1();

11 funk1();

12 cout << endl;

13 funk2();

14 funk2();

15 funk2();

16 }

17

18 void funk1()

19 {

20 cout << "this is funk1: ";

21 int x = 1;

22 ++x;

23 cout << x << endl;

24 }

25

26 void funk2()

27 {

28 cout << "this is funk2: ";

29 static int x = 1;

30 ++x;

31 cout << x << endl;

32 }

****** Output ******

this is funk1: 2

this is funk1: 2

this is funk1: 2

this is funk2: 2

this is funk2: 3

CIS22B Course Notes REVIEW 28

this is funk2: 4

Return type vs. return value

The return type of a function is declared in the function prototype or in the function heading. For

example,

The return value is that value following a return inside the body of a function. That value may

be converted to match the type specified in the function heading. For example,

// prototypes

void funk1(); // return type is void

int funk2(float); // return type is int

double funk3(float, float); // return type is double

Whatever funk4(string s) // return type is Whatever

{

…

}

CIS22B Course Notes REVIEW 29

Explanation

funk1 has a void return, or you would say “it has no return value”.

funk2 has a void return, or you would say “it has no return value”.

funk3 has an int return, its return value is 6.

funk4 has an int return, its return value is 6. The double, 6.5, would be converted to an int upon

return.

funk5 has an error. The function is supposed to return an int, but no value is returned.

Default arguments

A default argument is a value that is automatically passed as function argument is no argument

value is provided in the function call.

• Default arguments should be placed in the function prototype. If a prototype is not

provided., then the default arguments must be placed in the function heading.

• In the function argument list, mandatory arguments must precede default arguments.

• Default arguments may not be specified in both the function prototype and the heading of

the function definition.

void funk1()

{

 cout << “have a nice day” << endl;

}

void funk2()

{

 cout << “have a nice day” << endl;

 return;

}

int funk3()

{

 cout << “have a nice day” << endl;

 return 6;

}

int funk4()

{

 cout << “have a nice day” << endl;

 return 6.5;

}

int funk5()

{

 cout << “have a nice day” << endl;

}

CIS22B Course Notes REVIEW 30

• All of a function's arguments may have default values.

• A default value may not be applied to a reference argument.

Why is this an error?

void funk(int arg1 = 7, int arg2);

A function that is prototyped like this,

void funk(int x = 2, int y = 4, int z = 6);

may be called in 4 different ways:

funk(1,2,3); // first argument = 1, second = 2, third = 3

funk(1,2); // first argument = 1, second = 2, third = 6

funk(1); // first argument = 1, second = 4, third = 6

funk(); // first argument = 2, second = 4, third = 6

CIS22B Course Notes REVIEW 31

Arrays

An array is a multi-part variable that is stored in contiguous memory. Arrays are used to

represent multiple occurrences of data of the same type. Use of an array allows you to avoid

having to declare multiple variables of the same type. Arrays also facilitate passing multiple

values to a function and performing similar operations on different values.

The parts of an array variable are called elements. Elements are accessed using the index

operator.

Declaration

Some examples

How big is an array?

An array’s size in memory is the size of the type multiplied by the number of elements in the

array. For example, given

int data[5];

data’s size would be 20 bytes, since the size of an int is 4 bytes. You can use the size of operator

to determine the size of an array. So,

cout << sizeof(data);

would display 20.

Warning: you can only use the sizeof operator on a variable that is in scope.

The number of elements in an array is called the dimension of the array.

Initialization

The follow examples demonstrate different syntax for initializing elements of an array.

int data[5]; // declare a 5 element array of int

double d[300]; // declare a 300 element array of double

char ch[2]; // declare a 2 element array of char

long double ld[25]; // declare a 25 element array of long double

Dog myPets[5]; // declare a 5 element array of Dog

CIS22B Course Notes REVIEW 32

An array’s address

An array’s address in memory is its name. For example, if you declare an array as

double z[5000];

Then z represents the address of z’s location in memory.

This is an important concept that will be used to pass an array to a function.

How is an array stored in memory?

Because an array is stored in contiguous memory, you already know the address of each element

of the array. The first element is stored at the address that is the array’s name. For example, if

you have an int array,

int x[10];

Then, you can assume that the first element is stored at the address referenced by x. The second

element has an address that is 4 bytes larger than x, since int variable are stored in 4 bytes of

memory. The following example illustrates this idea.

Example 1-9 – How is an array stored in memory?

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 int array[5];

7

8 // What is the address of the array?

9 cout << array << endl; // using array name

10 cout << &array << endl; // using the address of operator

11 cout << &array[0] << endl; // using address of first element

12

13 // What is the address of the array?

14 for (int i = 0; i < 5; i++)

15 cout << &array[i] << " ";

16 cout << endl;

17

int arr[5] = { 2,3,5,7,11}; // assigns 2 3 5 7 11 to the array

int arr[5] = { 2,3}; // assigns 2 3 0 0 0 to the array

int arr[] = { 2,3,5,7,11}; // assigns 2 3 5 7 11 to the array

int arr[5] = {0}; // assigns 0 0 0 0 0 to the array

int arr[5] = {7}; // assigns 7 0 0 0 0 to the array

CIS22B Course Notes REVIEW 33

18 // Display addresses as a decimal number

19 cout << reinterpret_cast<long long>(array) << endl;

20 for (int i = 0; i < 5; i++)

21 cout << reinterpret_cast<long long>(&array[i]) << " ";

22 cout << endl;

23 }

****** Output - Code::Blocks ******

0x6dfee4

0x6dfee4

0x6dfee4

0x6dfee4 0x6dfee8 0x6dfeec 0x6dfef0 0x6dfef4

7208676

7208676 7208680 7208684 7208688 7208692

****** Output - MS Visual Studio 2017 ******

010FFD4C

010FFD4C

010FFD4C

010FFD4C 010FFD50 010FFD54 010FFD58 010FFD5C

17825100

17825100 17825104 17825108 17825112 17825116

****** Output - Linux g++ ******

0x7fff388f9530

0x7fff388f9530

0x7fff388f9530

0x7fff388f9530 0x7fff388f9534 0x7fff388f9538 0x7fff388f953c

0x7fff388f9540

140734142321968

140734142321968 140734142321972 140734142321976 140734142321980

140734142321984

Indexing

The index operator, [], is used to access individual elements of an array. For example, with

int data[5];

you can access the first element using

data[0]

the second element as

data[1]

CIS22B Course Notes REVIEW 34

and the last element in the array as

data[4]

The first element of an array is always element 0. The last element is always one less than the

number of elements in the array.

The bounds of an array are permissible integers that may be used to index an array. For

example, with the data array above, the bounds are 0 through 4. Indexing an array outside the

bounds of the array should be avoided. It may not result in a compilation error, but it may

result in unpredictable behavior. This problem is referred to as a segmentation fault (or a

segmentation violation).

The index operator may be used to access an r-value or an l-value. These terms are used to

identify how a value is to be used. An r-value is a value that is read from memory and an l-value

on one that is (or can be) written into memory. For example,

In the statement,

a[0] = 7;

the index operator returns an l-value.

In the statement,

cout << a[0];

the index operator returns an r-value.

Traversing an array

Traversing an array are methods used to access array elements in index order. This is usually

done using a for loop where the index variable of the for loop is used to index array elements.

For example,

int a[3]; // declare a 3 element array of int

a[0] = 7; // assign 7 to the first element of the array

cout << a[0]; // print the value in the first element of the array

CIS22B Course Notes REVIEW 35

Passing an array to a function

Because it is common to use a function to process an array, it is necessary to pass the array to a

function. To accomplish this, the pass is made by using the name of the array in the calling

function. That is because an array’s name is its address. The called function refers to the array

by using an address. For example,

Notice in the code above the called function references the array as int a[]. This syntax

identifies the argument as an int address. Because only the array’s address is passed to the

function, the function does not know how many elements are contained in the array. In this

example the number of elements is hard-coded as 50 in the for loop. Instead of hard-coding the

number of elements, it is common to pass that number as a function argument.

It is also inappropriate to use int a[50] as a function argument. Placing 50 inside the

parentheses is meaningless, since the compiler only sees the argument as an address and not the

actual size of the array. It is also common to use pointer notation in the function heading to refer

to the array address, like this:

void populate_array(int* a)

…

int* a and int a[] mean the same thing.

…

int array[50];

// function call, pass the array to the function

populate_array(array);

…

// function assigns random int to each element of the array

void populate_array(int a[])

{

 for (int i = 0; i < 50; i++)

 {

 a[i] = rand()%100+1;

 }

}

// print each element of an array

for(int i = 0; i < sizeofArray; i++)

{

 cout << array[i] << endl;

}

CIS22B Course Notes REVIEW 36

The size of an array passed to another function

When an array is passed to another function, it is passed as an address (pointer). The receiving

function does not see the number of elements contained in the passed array. For that reason, it is

common to pass the array size as another function argument along with the array.

Passing an array to a function as a const

It is common to use a function to only read values from an array and not change them. To

accomplish this, pass the array as a const.

…

int main()

{

 int array[50];

 cout << sizeof(array) << endl; ➔ 200

 funk(array);

}

void funk(int* a)

{

 cout << sizeof(a) << endl; ➔ 8 (prints 4 on a 32 bit compiler)

}

CIS22B Course Notes REVIEW 37

Passing an array element to a function

…

int main()

{

 int array[50];

 funk1(array);

 funk2(array);

 funk3(array);

}

void funk1(int* a)

{

 a[0] = 9; ➔ OK

}

void funk2(const int* a)

{

 a[0] = 9; ➔ compile error

}

void funk3(const int* a)

{

 cout <<a[0]; ➔ OK

}

…

int main()

{

 int array[50];

 funk1(array[0]); // pass the first element to funk1

 funk2(array[0]); // pass the first element to funk2

}

void funk1(int a) // argument passed by value

{

 a = 9;

}

void funk2(int& a) // argument passed by reference

{

 a = 9;

}

CIS22B Course Notes REVIEW 38

Swapping array elements

Two swap two array elements with a function, pass the two elements by reference.

…

int main()

{

 int array[50];

…

 swap(array[0],array[49]); // swap first and last element of the array

}

void swap(int& a, int& b) // arguments are passed by reference

{

 int temp = a;

 a = b;

 b = temp;

}

CIS22B Course Notes REVIEW 39

Sorting and Searching an Array

Bubble Sort

The bubble sort is a commonly used algorithm, easy to write, but not usually the most efficient.

The algorithm works by repeatedly stepping through the array, comparing adjacent items and

swapping them if they are out of order. The name of this algorithm comes from the logic that

forces the smallest values to “bubble” to the top, or to the bottom if you want a descending sort.

The basic logic looks like this:

This logic is not very efficient. The following example contains some efficiency improvements.

Example 1-10 – Bubble Sort

1 #include <iostream>

2 using namespace std;

3

4 void print(int a[], int size);

5 void bubble_sort (int a[], int size);

6 void swap (int& a, int& b);

7

8 int main()

9 {

10 int array[] = { 7,9,6,2,5,3 };

11 int size = sizeof(array) / sizeof(int);

12 bubble_sort(array, size);

13 print(array, size);

14 return 0;

15 }

16

17

18 void print (int a[], int size)

void sort (int a[], int size)

{

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size-1; j++)

 {

 if (a[j] > a[j+1]) // use < for a descending sort

 {

 swap(a[j],a[j+1]);

 }

 }

 }

}

CIS22B Course Notes REVIEW 40

19 {

20 int i;

21 for (i = 0; i < size; i++)

22 {

23 cout << a[i] << '\t';

24 }

25 cout << endl;

26 }

27

28

29 void bubble_sort (int a[], int size)

30 {

31 bool swapOccurred;

32

33 do

34 {

35 swapOccurred = false;

36 for (int i = 0; i < size-1; i++)

37 {

38 if (a[i] > a[i+1])

39 {

40 swap(a[i],a[i+1]);

41 swapOccurred = true;

42 }

43 }

44 }

45 while (swapOccurred);

46 }

47

48

49 void swap (int& a, int& b)

50 {

51 int temp;

52 temp = a;

53 a = b;

54 b = temp;

55 }

****** Output ******

2 3 5 6 7 9

Explanation

Efficiency is added to this code by decreasing amount the looping and exiting when no swap

occurs in a loop.

The following output shows what the array looks like after each pass through the do-while loop:

7 6 2 5 3 9

CIS22B Course Notes REVIEW 41

6 2 5 3 7 9

2 5 3 6 7 9

2 3 5 6 7 9

2 3 5 6 7 9

Further efficiency can be achieved by decreasing the length of the inner for loop, like this:

With this change, the inner loop executes only 12 times, instead of 25 times.

 for (int i = 0; i < size–i-1; i++)

 {

 if (a[i] > a[i+1])

 {

 swap(a[i],a[i+1]);

 swapOccurred = true;

 }

 }

CIS22B Course Notes REVIEW 42

Selection Sort

The selection sort algorithm, is also easy to implement. The algorithm works by dividing the list

into two parts, unsorted and sorted. The unsorted part is searched for the minimum value and

that value is then moved to the sorted part. So, the sorted part grows by one during each iteration

of the loop and the unsorted shrinks by one.

The logic looks like this:

Example 1-11 – Selection Sort

1 // Example 1-10 Selection sort

2

3 #include <iostream>

4 using namespace std;

5

6 void print(int a[], int size);

7 void selection_sort(int a[], int size);

8 void swap(int& a, int& b);

9

void sort(int a[], int size)

{

 // minIndex is the position in the unsorted part of the minimum

 int minIndex;

 for (int i = 0; i < size - 1; i++)

 {

 // find the position of the minimum in the unsorted part

 minIndex = i;

 for (int j = i+1; j < size; j++)

 {

 if (a[j] < a[minIndex])

 {

 minIndex = j;

 }

 }

 // swap the value of the minimum in the unsorted part with

 // the next value in the sorted part

 if(minIndex != i) // don’t swap if not necessary

 {

 swap(a[i],a[minIndex]);

 }

 }

}

CIS22B Course Notes REVIEW 43

10 int main()

11 {

12 int array[] = { 7,9,6,2,5,3 };

13 int size = sizeof(array) / sizeof(int);

14 selection_sort(array, size);

15 print(array, size);

16 return 0;

17 }

18

19

20 void print (int a[], int size)

21 {

22 int i;

23 for (i = 0; i < size; i++)

24 {

25 cout << a[i] << '\t';

26 }

27 cout << endl;

28 }

29

30

31 void selection_sort(int a[], int size)

32 {

33 // minIndex is the position in the unsorted part of the minimum

34 int minIndex;

35 for (int i = 0; i < size - 1; i++)

36 {

37 // find the position of the minimum in the unsorted part

38 minIndex = i;

39 for (int j = i+1; j < size; j++)

40 {

41 if (a[j] < a[minIndex])

42 {

43 minIndex = j;

44 }

45 }

46

47 // swap the value of the minimum in the unsorted part with

48 // the next value in the sorted part

49

50 if(minIndex != i) // don’t swap if not necessary

51 {

52 swap(a[i], a[minIndex]);

53 }

54 }

55 }

56

57

58 void swap(int& a, int& b)

59 {

60 int temp;

CIS22B Course Notes REVIEW 44

61 temp = a;

62 a = b;

63 b = temp;

64 }

****** Output ******

2 3 5 6 7 9

Explanation

The following shows the array after each iteration through the outer for loop. Notice that the

sorted part of the array (the left-hand side), grows by one element during each pass of the array.

2 9 6 7 5 3

2 3 6 7 5 9

2 3 5 7 6 9

2 3 5 6 7 9

2 3 5 6 7 9

In terms of efficiency, the selection sort is usually more efficient that the bubble sort. What

makes this sort more efficient the that the swapping usually occurs less. This is especially true

when the array size is larger and the array is mostly unsorted.

Insertion Sort

The insertion sort algorithm, is also fairly easy to implement. The algorithm works by inserting

each element of the array into a sort list. This algorithm is efficient for relatively small arrays.

Example 1-12 – Insertion Sort

1 // Example 1-11 Insertion sort

2

3 #include <iostream>

4 using namespace std;

5

6 // Function prototypes

7 void insertion_sort(int* list, int size);

8 void print(int* a, int size);

9

10 int main()

11 {

12 int array[] = {7,9,6,2,5,3};

13 int size = sizeof (array) / sizeof (int);

14 insertion_sort(array, size);

15 print(array, size);

16 return 0;

17 }

CIS22B Course Notes REVIEW 45

18

19 void insertion_sort(int* list, int size)

20 {

21 int i, j; // for loop indexes

22 int valueToBeInserted;

23 bool found; // flag to indicate insert position found

24

25 for (i = 1; i < size; i++)

26 {

27 // The ith element will be inserted into the "sorted" list

in the correct location

28 found = false;

29 // valueToBeInserted will hold the ith element in the

"unsorted list

30 valueToBeInserted = list[i];

31

32 // find the position in sorted list for insertion

33 for (j = i - 1; j >= 0 && !found;)

34 {

35 // if valueToBeInserted < the jth element, shift

unsorted elements (to the right)

36 if (valueToBeInserted < list[j])

37 {

38 list[j + 1] = list[j];

39 j--;

40 }

41 // otherwise the insertion position is found

42 else

43 {

44 found = true;

45 }

46 }

47 // insert valueToBeInserted into its correct position in

the sorted list

48 list [j + 1] = valueToBeInserted;

49 }

50 }

51

52 void print(int* a, int size)

53 {

54 int i;

55 for (i = 0; i < size; i++)

56 {

57 cout << a[i] << '\t';

58 }

59 cout << endl;

60 }

****** Output ******

2 3 5 6 7 9

CIS22B Course Notes REVIEW 46

Explanation

The insertion sort array is divided into two parts, sorted and unsorted. The logic begins

assuming the first element of the array, list, is sorted. The loop, lines 25-49, processes each

remaining element to be inserted into the sorted part of the array. The inner for loop, lines 33-

46, finds the position in which to insert the target element value. While the position is not yet

located, line 36, the unsorted part of the array shifts to a higher (greater index) position to fill the

void of the target element position. Once the insertion position is found (line 42), the found flag

is set and the inner for loop terminates. The value to be inserted in then inserted into the sorted

part.

The following shows the appearance of the array after each pass through the output for loop.

The bold-faced elements are in the sorted part of the list.

7 9 6 2 5 3

6 7 9 2 5 3

2 6 7 9 5 3

2 5 6 7 9 3

2 3 5 6 7 9

Sequential Search

A sequential search of an array involves traversing an array and checking for the existence of a

target value. The logic looks like this:

The search criteria may test for equality or some another relationship to array element values or

expressions involving the element values. A sequential search may return a Boolean value

indicating success or failure of the search, the element value itself, or the index position of where

the relevant value was located in the array.

Binary Search

A binary search is a search in which the array data is repeatedly split in half until the search key

is found or it is determined that the search value is not present. The data must be sorted on the

search key.

 for (int i = 0; i < size; i++)

 {

 if (a[i] == target_value)

 {

 return true;

 }

 }

CIS22B Course Notes REVIEW 47

Example 1-13 – Binary Search

1 // Example 1-12 Binary search

2

3 #include <iostream>

4 #include <cstdlib>

5 using namespace std;

6

7 void fillArrayWithRandomNumbers(int a[], int size);

8 void print(int a[], int size);

9 void sort(int a[], int size);

10 void swap(int& a, int& b);

11 int search(int searchValue, int a[], int size);

12

13 int main()

14 {

15 int array[100];

16 int number;

17 int size = sizeof(array) / sizeof(int);

18 fillArrayWithRandomNumbers(array, size);

19 sort(array, size);

20 print(array, size);

21

22 while (1)

23 {

24 cout << "What number do you want to search for (0 to exit)?

";

25 cin >> number;

26 if (number == 0)

27 break;

28 cout << search(number, array, size) << endl;

29 }

30

31 return 0;

32 }

33

34 void print (int a[], int size)

35 {

36 int i;

37 for (i = 0; i < size; i++)

38 {

39 cout << a[i] << '\t';

40 }

41 cout << endl;

42 }

43

44 // selection sort

45 void sort (int a[], int size)

46 {

47 int minIndex;

CIS22B Course Notes REVIEW 48

48 for (int i = 0; i < size - 1; i++)

49 {

50 minIndex = i;

51 for (int j = i+1; j < size; j++)

52 {

53 if (a[j] < a[minIndex])

54 {

55 minIndex = j;

56 }

57 }

58 if(minIndex != i)

59 {

60 swap(a[i], a[minIndex]);

61 }

62 }

63 }

64

65 void swap (int& a, int& b)

66 {

67 int temp;

68 temp = a;

69 a = b;

70 b = temp;

71 }

72

73

74 void fillArrayWithRandomNumbers(int a[], int size)

75 {

76 int i;

77 for (i = 0; i < size; i++)

78 {

79 a[i] = rand()%1000;

80 }

81 }

82

83 // Returns array index position of searchValue

84 // Returns -1 if searchValue is not found

85 int search(int searchValue, int a[], int size)

86 {

87 int low, high, middle;

88 low = 0;

89 high = size-1;

90

91 while (low <= high)

92 {

93 middle = (low + high) / 2;

94 if (searchValue < a[middle])

95 {

96 high = middle - 1;

97 }

98 else if (searchValue > a[middle])

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 49

99 {

100 low = middle + 1;

101 }

102 else

103 {

104 return middle;

105 }

106 }

107

108 // Return -1 if searchValue not found

109 return -1;

110 }

****** Sample Run ******

7 11 30 49 93 104 108 119 119 126

134 164 169 169 184 190 190 195 223 236

245 256 256 256 262 301 306 310 327 330

330 334 337 344 351 352 356 363 366 393

397 405 425 427 431 484 490 491 497 508

509 509 529 549 551 572 592 596 613 620

624 629 635 649 656 665 675 690 695 700

705 710 711 719 727 738 743 743 749 752

754 760 783 801 824 843 847 862 868 876

917 920 929 932 932 933 944 963 972 980

What number do you want to search for (0 to exit)? 490

46

What number do you want to search for (0 to exit)? 491

47

What number do you want to search for (0 to exit)? 7

0

What number do you want to search for (0 to exit)? 980

99

What number do you want to search for (0 to exit)? 981

-1

What number do you want to search for (0 to exit)? 0

Explanation

The binary search function uses 3 variables to repeatedly split the array in half. The low index

holds the minimum index position of a half and the high holds the maximum index position of a

half. The middle holds that index position that is examined during each iteration of the while

loop (lines 91-106). The looping continues as long as the searchValue is not found (lines 94 &

98). If the searchValue is found (line 102), the index position, middle, is returned. Otherwise,

if the low will eventually match or exceed the high index position and the non-exist value, -1, is

returned.

Multidimensional Arrays

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 50

A wise man once said, “There is no such thing as a two-dimensional (or three-dimensional)

array. There are only one-dimensional arrays.” If that is the case, then you can think of a two-

dimension array as a just a one-dimension array in which each element is a one-dimension array.

Two-Dimensional Arrays

Declaration and Initialization

How is a 2D array stored in memory?

Example 2-1 – How is a 2D array stored in memory?

1 // Example 2-1 How is a 2D array stored in memory?

2

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 int main()

8 {

9 // declare and initialize a two dimensional array

10 int a[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

11

12 // print the array elements

13 for (int row = 0; row < 3; row++)

14 {

15 for (int col = 0; col < 4; col ++)

16 {

17 cout << setw(10) << a[row][col];

18 }

19 cout << endl;

20 }

21 cout << endl;

22

23 // print the addresses of the array elements

24 for (int row = 0; row < 3; row++)

25 {

26 for (int col = 0; col < 4; col ++)

27 {

28 cout << setw(10) << &(a[row][col]);

29 }

int a[3][4]; // declare a 2D array with 3 rows and 4 columns

// declare and initialize a 2D array

// first row gets 1 2 3. Second row gets 4 5 6

int b[2][3] = {{1,2,3},{4,5,6}};

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 51

30 cout << endl;

31 }

32 cout << endl;

33

34 // print the addresses of the array elements as decimal numbers

35 for (int row = 0; row < 3; row++)

36 {

37 for (int col = 0; col < 4; col ++)

38 {

39 cout << setw(10)

40 << reinterpret_cast<long>(&(a[row][col]));

41 }

42 cout << endl;

43 }

44 cout << endl;

45

46 // print the address of the array and of each row

47 cout << "Address of a = " << &a << endl;

48 cout << "Address of the first row = " << &a[0] << endl;

49 cout << "Address of the second row = " << &a[1] << endl;

50 cout << "Address of the third row = " << &a[2] << endl;

51 }

****** Output – Code::Blocks ******

 1 2 3 4

 5 6 7 8

 9 10 11 12

 0x6dfeb8 0x6dfebc 0x6dfec0 0x6dfec4

 0x6dfec8 0x6dfecc 0x6dfed0 0x6dfed4

 0x6dfed8 0x6dfedc 0x6dfee0 0x6dfee4

 7208632 7208636 7208640 7208644

 7208648 7208652 7208656 7208660

 7208664 7208668 7208672 7208676

Address of a = 0x6dfeb8

Address of the first row = 0x6dfeb8

Address of the second row = 0x6dfec8

Address of the third row = 0x6dfed8

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 52

2D Arrays and Functions

How do you pass a 2D array to a function?

Explanation

A 2D array is passed to a function using the array’s name. Recall, an array’s name is its

address (in memory). The function “sees” the array argument as the address of a 1D array. In

this case, the argument appears as the address of an array of 4 ints. This is important. In passing

a 2D array, it is passed as the address of a 1D array. Similarly, when you want to pass a 1D

array to a function, it is passed as the address of one element (type) of the array.

One more point of this code snippet, the function argument may be expressed using pointer

notation as

void somefunction(int (*a)[4])

{

 …

}

The argument can be declared as a pointer to an array of 4 ints.

{

 int array[3][4];

 …

 somefunction(array);

 …

}

…

void somefunction(int a[][4])

{

 …

}

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 53

How do you pass an element of a 2D array to a function?

Explanation

Each element of the array is, in this case, an int. To access an element, you need to index the

array twice. So, you need a function that takes an int argument. The function can also accept the

int argument passed by reference (or reference to const).

How do you pass a row of a 2D array to a function?

Explanation

To access one row of a 2D array you need to index the array once. The called function sees the

argument as a 1D array. From the function’s perspective, it does not know that the source of its

argument is a 2D array. You can also use pointer notation in the function argument, like this:

void somefunction(int* row)

{

 …

}

{

 int array[3][4];

 …

 // pass element from second row, third column

 somefunction(array[1][2]);

 …

}

…

void somefunction(int element)

{

 …

}

{

 int array[3][4];

 …

 // pass the second row to the function

 somefunction(array[1]);

 …

}

…

void somefunction(int row[])

{

 …

}

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 54

How do you pass a column of a 2D array to a function?

Explanation

It turns out – you can’t. In order to pass a column of an array, you must pass the entire array,

along with the column that you are interest in. Then the called function must operate on only the

targeted column.

The following example illustrates the approaches to passing arrays and parts of an array to a

function.

Example 2-2 – 2D Arrays and Functions

1 // Example 2-2 - 2D Arrays and Functions

2

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 const int Cols = 4;

8

9 void print2dArray(int [][Cols], int rows);

10 void print1ElementOf2dArray(int element);

11 void print1RowOf2dArray(int row[]);

12 void print1ColumnOf2dArray(int [][Cols], int rows, int col);

13

14 int main()

15 {

16 const int Rows = 3;

17 int a[Rows][Cols] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

18

19 // print the array

20 print2dArray(a,Rows);

21

22 // Print the second row

{

 int array[3][4];

 …

 somefunction(array,1);

 …

}

…

void somefunction(int a[][4], int col)

{

 …

}

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 55

23 cout << "The second row" << endl;

24 print1RowOf2dArray(a[1]);

25

26 // Print the second element in the third row

27 cout << "The second element in the third row" << endl;

28 print1ElementOf2dArray(a[2][1]);

29

30 // Print the third column

31 cout << "The third column" << endl;

32 print1ColumnOf2dArray(a, Rows, 2);

33

34 return 0;

35 }

36

37 void print2dArray(int A[][Cols], int rows)

38 {

39 for (int i = 0; i < rows; i++)

40 {

41 for (int j = 0; j < Cols; j++)

42 cout << setw(3) << A[i][j];

43 cout << endl;

44 }

45 cout << endl;

46 }

47

48

49 void print1ElementOf2dArray(int element)

50 {

51 cout << setw(3) << element << endl << endl;

52 }

53

54

55 void print1RowOf2dArray(int A[])

56 {

57 for (int i = 0; i < Cols; i++)

58 cout << setw(3) << A[i];

59 cout << endl;

60 }

61

62

63 void print1ColumnOf2dArray(int A[][Cols], int rows, int col)

64 {

65 for (int i = 0; i < rows; i++)

66 {

67 cout << setw(3) << A[i][col] << endl;

68 }

69 cout << endl;

70 }

****** Output ******

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 56

 1 2 3 4

 5 6 7 8

 9 10 11 12

The second row

 5 6 7 8

The second element in the third row

 10

The third column

 3

 7

 11

Is there another way?

It turns out that you can pass an entire array to another function using a reference to the array. It

looks like this:

Example 2-3 – Passing an array to a function by reference

1 // Example 2-3 - Passing an array to a function by reference

2

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 const int Rows = 3;

8 const int Cols = 4;

9

10 void print2dArray(int(&)[Rows][Cols]);

11

12 int main()

13 {

14 int a[Rows][Cols] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

15

16 // print the array

17 print2dArray(a);

18 }

19

20 void print2dArray(int(&A)[Rows][Cols])

21 {

22 for (int i = 0; i < Rows; i++)

23 {

24 for (int j = 0; j < Cols; j++)

25 cout << setw(3) << A[i][j];

26 cout << endl;

27 }

28 cout << endl;

29 }

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 57

****** Output ******

 1 2 3 4

 5 6 7 8

 9 10 11 12

Explanation

This example illustrates passing the entire array by reference. First of all, notice the syntax

representing the function argument in both the prototype and the function heading. This syntax

is a little funny – the (&A) means that A is a reference to an array with 3 rows and 4 columns.

Contrast this approach with the print2dArray function in the previous example. There, the array

is passed as the address of a 1D array. In this example the print2dArray function sees the

argument A as a 2D array.

Is this approach better than the previous example. No, not really. And in terms of efficiency, it’s

probably a tie. But, for two reasons you should probably use the prior approach.

1 The previous example permits more flexibility. Your array argument can have any

number of rows. In the second approach the number of rows is not flexible.

2 It is important that you learn to work with addresses or pointers and that you learn to

interpret the contents of the pointer.

Read data from a file into a 2D array

Example 2-4 - Read data from a file into a 2D array

The following example illustrates the process of reading data from a file into a 2D array. In this

example the file shown below is read. The data from this file will be stored into a 2D int array

and then printed back out to the console in the same format as originally stored in the file. The

code addresses a potential issue - what if the file contains more or less than 50 records?

Input File: appledata.txt

Date Open High Low Close* Adj Close** Volume

Oct 03, 2018 230.05 233.47 229.78 232.07 232.07 28,563,300

Oct 02, 2018 227.25 230.00 226.63 229.28 229.28 24,788,200

Oct 01, 2018 227.95 229.42 226.35 227.26 227.26 23,600,800

Sep 28, 2018 224.79 225.84 224.02 225.74 225.74 22,929,400

Sep 27, 2018 223.82 226.44 223.54 224.95 224.95 30,181,200

Sep 26, 2018 221.00 223.75 219.76 220.42 220.42 23,984,700

Sep 25, 2018 219.75 222.82 219.70 222.19 222.19 24,554,400

Sep 24, 2018 216.82 221.26 216.63 220.79 220.79 27,693,400

Sep 21, 2018 220.78 221.36 217.29 217.66 217.66 96,246,700

Sep 20, 2018 220.24 222.28 219.15 220.03 220.03 26,608,800

…

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 58

1 #include <iostream>

2 #include <iomanip>

3 #include <fstream>

4 #include <string>

5 #include <cstdlib>

6 #include <cmath>

7 using namespace std;

8

9 const int NumRows = 50;

10

11 int getDataFromFile(int [][7], const string& filename);

12 void printData(int [][7], int NumRows);

13 int getMonthNumberFromString(string month);

14 string getMonthFromNumber(int num);

15

16 int main()

17 {

18 int data[NumRows][7];

19 int numNumRowsFromFile;

20 string filename("appledata.txt");

21 numNumRowsFromFile = getDataFromFile(data,filename);

22 printData(data,numNumRowsFromFile);

23 }

24

25 // returns number of records read into array

26 int getDataFromFile(int data[][7], const string& filename)

27 {

28 ifstream fin(filename.c_str());

29 int month, day, year;

30 int recordCount = 0; // the number of records in input file

31 float floatTemp;

32 int intTemp;

33 char commaBuffer[5];

34

35 if (!fin)

36 {

37 cerr << "Unable to open file " << filename << endl;

38 exit(1);

39 }

40

41 // discard headings

42 string buffer;

43 getline(fin,buffer);

44

45 while (!fin.eof())

46 {

47 // get month

48 fin >> buffer;

49 if (fin.eof() || recordCount == NumRows)

50 break;

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 59

51 month = getMonthNumberFromString(buffer);

52

53 // get the day of the month

54 fin.get(commaBuffer, sizeof(commaBuffer),',');

55 fin.get();

56 day = atoi(commaBuffer);

57

58 // get the year

59 fin >> year;

60

61 data[recordCount][0] = 10000 * year + 100 * month + day;

62

63 // Get next 5 float columns

64 for (int i = 1; i <= 5; i++)

65 {

66 fin >> floatTemp;

67 data[recordCount][i] =

68 static_cast<int>(round(floatTemp*100));

69 }

70

71 // Get volume, remove commas

72 fin.getline(commaBuffer, sizeof(commaBuffer),',');

73 data[recordCount][6] = 1000000 * (atoi(commaBuffer)% 100);

74 fin.getline(commaBuffer, sizeof(commaBuffer),',');

75 data[recordCount][6] += 1000 * atoi(commaBuffer);

76 fin >> intTemp;

77 data[recordCount][6] += intTemp;

78 recordCount++;

79 }

80 return recordCount;

81 }

82

83 // Returns the month number for month string

84 int getMonthNumberFromString(string month)

85 {

86 if (month == "Jan")

87 return 1;

88 if (month == "Feb")

89 return 2;

90 if (month == "Mar")

91 return 3;

92 if (month == "Apr")

93 return 4;

94 if (month == "May")

95 return 5;

96 if (month == "Jun")

97 return 6;

98 if (month == "Jul")

99 return 7;

100 if (month == "Aug")

101 return 8;

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 60

102 if (month == "Sep")

103 return 9;

104 if (month == "Oct")

105 return 10;

106 if (month == "Nov")

107 return 11;

108 if (month == "Dec")

109 return 12;

110 return 0;

111 }

112

113 // Returns the month string for the month number

114 string getMonthFromNumber(int num)

115 {

116 const string month[12] =

117 {"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep",

118 "Oct","Nov","Dec"};

119 return month[num-1];

120 }

121

122 // Prints the array values in the original format

123 void printData(int data[][7], int NumRows)

124 {

125 int monthNum;

126 cout << setprecision(2) << fixed << setfill('0');

127 for (int i = 0; i< NumRows; i++)

128 {

129 // Print date

130 monthNum = data[i][0] / 100 % 100;

131 cout << getMonthFromNumber(monthNum) << ' '

132 << setw(2) << data[i][0]%100

133 << ", " << data[i][0] / 10000 << '\t';

134

135 // Print 5 $ floating point columns

136 for (int col = 1; col <= 5 ; col++)

137 cout << data[i][col]/100.f << '\t';

138

139 // Print volume data with commas

140 cout << data[i][6]/1000000 << ',' << setw(3)

141 << data[i][6]/1000 % 1000 << ','

142 << setw(3) << data[i][6] % 1000 << endl;

143 }

144 }

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 61

****** Output ******

Oct 03, 2018 230.05 233.47 229.78 232.07 232.07 28,563,300

Oct 02, 2018 227.25 230.00 226.63 229.28 229.28 24,788,200

Oct 01, 2018 227.95 229.42 226.35 227.26 227.26 23,600,800

Sep 28, 2018 224.79 225.84 224.02 225.74 225.74 22,929,400

Sep 27, 2018 223.82 226.44 223.54 224.95 224.95 30,181,200

Sep 26, 2018 221.00 223.75 219.76 220.42 220.42 23,984,700

Sep 25, 2018 219.75 222.82 219.70 222.19 222.19 24,554,400

Sep 24, 2018 216.82 221.26 216.63 220.79 220.79 27,693,400

Sep 21, 2018 220.78 221.36 217.29 217.66 217.66 96,246,700

Sep 20, 2018 220.24 222.28 219.15 220.03 220.03 26,608,800

…

Explanation

The file data will be stored in the int array, data (line 18). The function, getDataFromFile, reads

the data from the input file, appledata.txt. (line 21 and lines 26-81).

Reading data from the file into the array

Line 43: the headings line is read from the file and ignored.

Line 48: the 3-character month abbreviation is read into the string variable, buffer.

Lines 49-50: a check is made for EOF or the number of records in the file exceeding the array

row size (of 50). This prevents reading more than 50 records into the array.

Line 51: the month abbreviation string is converted to an int by the function

getMonthNumberFromString.

Line 54: the day of the month is read from the file into a c-string variable, commaBuffer. The

comma is skipped over.

Line 55: the blank space following the comma in the input file is read, and ignored.

Line 56: the c-string, commaBuffer, is converted to an int using the atoi function and stored in

the int variable, day.

Line 59: the year is read from the file.

Line 61: the date (month, day, and year) is translated into an int value and stored in the array (see

array data below).

Lines 64-69: the next 5 columns (contains dollar amounts) are read and stored as int values after

multiplying each float value by 100.

Lines 72-77: the volume data, containing commas is read and stored in the array. The commas

are removed. This volume number is read in three pieces due to the presence of the two

commas. The millions value is read first as a c-string (line 72). The comma is skipped over.

That value is converted to an int and multiplied by 1000000, then stored in the 7th column (index

6) in the array (line 73). Next, thousands value is read as a c-string (line 74). The comma is

skipped. That value is converted to an int and multiplied by 1000, then added to the value stored

in the 7th column in the array (line 75). Finally, the rest of the volume number is read (line 76) as

an int and added to the value in the 7th column in the array (line 77).

Line 78: the recordCount variable is incremented. This count is the actual number of records

read from the file. It will be returned.

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 62

Writing data from the array back out to the console (lines 123-143)

Line 126: output is set to display 2 decimal places and a ‘0’ fill character is specified.

Line 130: the date int value in column 0 is parsed to get the 5th and 6th numeric digits that

represent the month number.

Line 131: the month number is converted and displayed to the 3-character month abbreviation by

the getMonthFromNumber function. One blank space is added to the output.

Line 132: the day of the month is extracted from (last two digits of) the date int value. It is

displayed along with

Line 133: a comma and a space. Finally, the year value is extracted and displayed by dividing

the date (int) value by 10000.

Lines 136-137: The 5 columns of floating-point dollar amounts (2nd-6th column) are displayed by

dividing each value by 100.f (float value for 100).

Line 140-141: The volume data is display by parsing the int value and inserting commas for the

millions and thousands.

2D array data

Sort a 2D array by a column

Example 2-5 – Sort a 2D array by a column

The following example illustrates the process of sorting a 2D array by a column.

1 #include <iostream>

2 #include <iomanip> // for setw()

3 #include <cstdlib> // for rand()

4 using namespace std;

5

6 // Constants

7 const int NumRows = 5;

8 const int NumCols = 6;

9

10 // Prototypes

20181003 23005 23347 22978 23207 23207 28563300

20181002 22725 23000 22663 22928 22928 24788200

20181001 22795 22942 22635 22726 22726 23600800

20180928 22479 22584 22402 22574 22574 22929400

20180927 22382 22644 22354 22495 22495 30181200

20180926 22100 22375 21976 22042 22042 23984700

20180925 21975 22282 21970 22219 22219 24554400

20180924 21682 22126 21663 22079 22079 27693400

20180921 22078 22136 21729 21766 21766 96246700

20180920 22024 22228 21915 22003 22003 26608800

…

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 63

11 void initializeArray(int [][NumCols]);

12 void printArray(int [][NumCols]);

13 void sortArray(int [][NumCols], int col);

14 void swapRow(int a[], int b[]);

15 void swap(int& a, int& b);

16

17

18 int main()

19 {

20 int A[NumRows][NumCols];

21 initializeArray(A);

22 printArray(A);

23

24 // sort on first column

25 sortArray(A,0);

26 cout << "Sorted on first column\n";

27 printArray(A);

28

29 // sort on third column

30 sortArray(A,2);

31 cout << "Sorted on third column\n";

32 printArray(A);

33

34 // sort on sixth column

35 sortArray(A,5);

36 cout << "Sorted on sixth column\n";

37 printArray(A);

38 }

39

40

41 void initializeArray(int data[][NumCols])

42 {

43 for (int r = 0 ; r < NumRows; r++)

44 for (int c = 0; c < NumCols; c++)

45 data[r][c] = rand() % 100 + 1; // random 1 - 100

46 }

47

48

49 void printArray(int data[][NumCols])

50 {

51 for (int r = 0 ; r < NumRows; r++)

52 {

53 for (int c = 0; c < NumCols; c++)

54 {

55 cout << setw(5) << data[r][c];

56 }

57 cout << endl;

58 }

59 cout << endl;

60 }

61

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 64

62 void sortArray(int data[][NumCols], int col)

63 {

64 int i, j;

65 for (i = 0; i < NumRows - 1; i++)

66 {

67 for (j = i+1; j < NumRows; j++)

68 {

69 if (data[i][col] > data[j][col])

70 swapRow(data[i],data[j]);

71 }

72 }

73 }

74

75 void swapRow(int a[], int b[])

76 {

77 for (int i = 0; i < NumCols; i++)

78 {

79 swap(a[i],b[i]);

80 }

81 }

82

83 void swap(int& a, int& b)

84 {

85 int temp;

86 temp = a;

87 a = b;

88 b = temp;

89 }

****** Output ******

 42 68 35 1 70 25

 79 59 63 65 6 46

 82 28 62 92 96 43

 28 37 92 5 3 54

 93 83 22 17 19 96

Sorted on first column

 28 37 92 5 3 54

 42 68 35 1 70 25

 79 59 63 65 6 46

 82 28 62 92 96 43

 93 83 22 17 19 96

Sorted on third column

 93 83 22 17 19 96

 42 68 35 1 70 25

 82 28 62 92 96 43

 79 59 63 65 6 46

 28 37 92 5 3 54

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 65

Sorted on sixth column

 42 68 35 1 70 25

 82 28 62 92 96 43

 79 59 63 65 6 46

 28 37 92 5 3 54

 93 83 22 17 19 96

Explanation

Lines 21 and 41-46: the 5x6 array is initialized with random ints between 1 and 100

The sort function (lines 62-73)

The sort function uses simple bubble sort logic.

Line 62: the function arguments represent the array to be sorted and the column to sort on.

Line 69: the comparison is of the data in the desired column in two different rows. If the

comparison is true,

Line 70: the entire rows are swapped.

Lines 75-81: the swapRow function swaps each element in the row.

Three-Dimensional Arrays

You can think of a 3-dimensional array as an array of two-dimensional arrays, or an array of an

array of one-dimensional arrays. The indexes or dimensions of a 3D array are usually called

rows, columns, and sets or pages.

3D Arrays – declaration, initialization, and functions

Example 2-6 – An easy 3D example

The following example demonstrates declaration and initialization of a 3D array, passing it to a

function, and indexing the array.

1 #include <iostream>

2 #include <iomanip>

3 using namespace std;

4

5 const int NumRows = 3, NumCols = 4;

6

7 void print(int data[][NumRows][NumCols], int sets);

8

9 int main()

10 {

11 const int numSets = 2;

12 int array[numSets][NumRows][NumCols] =

13 {{{2,3,5,7},{11,13,17,19},{13,29,31,37}},

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 66

14 {{41,43,47,53},{59,61,67,71},{73,79,83,89}}};

15 print(array,numSets);

16 }

17

18 void print(int data[][NumRows][NumCols], int numSets)

19 {

20 for (int set = 0; set < numSets; ++set)

21 {

22 for (int row = 0; row < NumRows; ++row)

23 {

24 for (int col = 0; col < NumCols; ++col)

25 {

26 cout << setw(5) << data[set][row][col];

27 }

28 cout << endl;

29 }

30 cout << endl; // extra blank line after each set

31 }

32 }

****** OUTPUT ******

 2 3 5 7

 11 13 17 19

 13 29 31 37

 41 43 47 53

 59 61 67 71

 73 79 83 89

Example 2-7 – A 3D example with some calculations

This example illustrates the use of a 3-D array in which calculations are performed on the array

contents. The program calculates column totals, row totals, and "page" totals.

1 #include <iostream>

2 #include <iomanip>

3 using namespace std;

4

5 const int NumRows = 3;

6 const int NumCols = 4;

7

8 void printArray(int[][NumRows][NumCols], int);

9 int sumRow(int[]);

10 int sumCol(int[][NumCols], int whichCol);

11 int sumPage(int[][NumCols]);

12

13 int main()

14 {

15 const int NumPages = 2;

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 67

16

17 int A[NumPages][NumRows][NumCols] =

18 {{{1,2,3,4},{5,6,7,8},{9,10,11,12}},

19 {{13,14,15,16},{17,18,19,20},{21,22,23,24}}};

20 printArray(A,NumPages);

21 }

22

23

24 void printArray(int array[][NumRows][NumCols], int pages)

25 {

26 for (int p = 0; p < pages; p++)

27 {

28 for (int r = 0; r < NumRows; r++)

29 {

30 for (int c = 0; c < NumCols; c++)

31 {

32 cout << setw(5) << array[p][r][c];

33 }

34 cout << setw(8) << sumRow(array[p][r]) << endl;

35 }

36 cout << endl;

37 for (int c = 0; c < NumCols; c++)

38 cout << setw(5) << sumCol(array[p],c);

39 cout << setw(8) << sumPage(array[p]) << endl << endl;

40 }

41 }

42

43 int sumRow(int array[])

44 {

45 int sum = 0;

46 for (int c = 0; c < NumCols; c++)

47 {

48 sum += array[c];

49 }

50 return sum;

51 }

52

53 int sumCol(int array[][NumCols], int whichCol)

54 {

55 int sum = 0;

56 for (int r = 0; r < NumRows; r++)

57 {

58 sum += array[r][whichCol];

59 }

60 return sum;

61 }

62

63 int sumPage(int array[][NumCols])

64 {

65 int sum = 0;

66 for (int r = 0; r < NumRows; r++)

CIS22B Course Notes MULTIDIMENSIONAL ARRAYS 68

67 {

68 for (int c = 0; c < NumCols; c++)

69 sum += array[r][c];

70 }

71 return sum;

72 }

****** OUTPUT ******

 1 2 3 4 10

 5 6 7 8 26

 9 10 11 12 42

 15 18 21 24 78

 13 14 15 16 58

 17 18 19 20 74

 21 22 23 24 90

 51 54 57 60 222

Explanation

Lines 24-41: the printArray function displays the output shown above. The triple for loop

displays each element in the array (line 32). At the end of each row, the sum of the elements in

the row is displayed using a call to the sumRow function (line 34). The function argument for

that call is a row in the array. That row represents one row on one page. That row represents a

1D array.

At the end of each page, column totals are displayed, and at the end of that line, the total for all

elements on that page. The column totals are calculated with the sumCol function (line 38). The

arguments for that function is one page of the array and the targeted column index. Notice that

the array page is passed as a 2D array.

Finally, the page total (78 and 222) is calculated with the sumPage function (line 39). That

function call is made using a page argument. That page is passed as a 2D array.

Appreciate that the three functions sumRow, sumCol, and sumPage are independent of a 3D

array. Their arguments contain only 1D or 2D arrays.

CIS22B Course Notes POINTERS AND ARRAYS 69

Pointers and Arrays

A pointer is a data type that is used to hold a memory address. Pointers are associated with a type

of data. For example, an int pointer, also called a pointer to int can hold (or contain) the address

of an int value. You might also say that the pointer points to an int.

Pointers are used as function arguments or return types, and pointers are used to iterate through

an array.

Pointer Basics

Declare and initialize a pointer

The star character is used in the declaration of a pointer. For example,

int* p;

You would say, “p is an int pointer” or “p is a pointer to int” or “p can hold the address of an

int”. But right now, p is uninitialized.

Let’s look at a few more examples.

int x;

int* px = &x; // px is a pointer to int containing the address of x

int *ps2; // the star can be next to the type or the variable

ps2 = &x;

double* p; // p is a pointer to a double

whatever *pw; // pw is a pointer to a whatever

whocares* ptr; // ptr is a whocares pointer

CIS22B Course Notes POINTERS AND ARRAYS 70

Assign a value to a pointer

Dereference a pointer

Ok, you’ve got the idea that a pointer holds the address of a variable. Just like an int holds an int

value, an int pointer holds a value, but its value is an address. Keep in mind that pointers are

types, just like int, float, double, char, string, and long double.

You assign a value to a primitive type using the assignment operator, like

int q;

q = 7;

But there is another way to do this. Consider,

int* pq;

pq = &q;

So, pq holds the address of q, and q contains 7. Suppose you want to change q to 19. Well, of

course, that is

q = 19;

But wait, we can do it this way

*pq = 19;

int x = 9, y = 10, z;

int* p1; // p1 is declared

p1 = &z; // p1 is assigned a value

int* p2 = &x; // p2 is declared and initialized

p2 = &y; // p2 is assigned, or you could say p2 is moved

 // p2 now points to y

double d = 2.54;

double* pd = &d; // p2 is declared and initialized

string s(“Have a nice day”);

string* pS; // pS is declared (a pointer to a string)

pS = &s; // pS is assigned the address of s

CIS22B Course Notes POINTERS AND ARRAYS 71

That star is the (unary) dereferencing operator. Also, called the indirection operator. It means,

take the value that is contained in the address pointed to. You might read that line as “star pq

gets 19”.

Why would you want to use that dereferencing operator? We’ll see.

Here’s something else to think about – what if you want to print out q. Well, of course,

cout << q;

Well, there’s another way …

cout << (*pq);

*pq means take the value at an address.

If you think about the two examples above where we had the expression, *pq, that expression

was used in two different ways. In both cases it meant take the value at the address of q. In the

first case the dereference operator was used to assign a value to q. In the second case the

dereference operator was used to retrieve the value contained in q. This is often described as the

* operator can return an l-value (the first case) or an r-value (the second case). These terms

come from the assignment operator. You can only put l-values on the left side of an assignment

operator and r-values on the right side of the assignment operator.

A Pointer as a function argument

Pointers are often used as function arguments. It may be more efficient to pass a pointer to a

function than passing a variable or an object. That is because the variable or object may occupy

more memory than a pointer. And usually the pointer will be dereferenced in the called function

to access the value that the pointer points to.

Example 3-1 – A pointer as a function argument

1 #include <iostream>

2 #include <iomanip>

3 using namespace std;

4

5 void add5(int*);

6

7 int main()

8 {

9 int x = 19;

10 cout << x << endl;

11 add5(&x);

12 cout << x << endl;

13 }

14

15 void add5(int* ptr)

CIS22B Course Notes POINTERS AND ARRAYS 72

16 {

17 *ptr += 5;

18 }

****** Output ******

19

24

Pointers and Arrays

How are pointers and arrays similar? How are they different?

• An array’s name is it address in memory. A pointer’s value is an address in memory.

Example 3-2 - Memory addresses of arrays and pointers

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 int array[10]; // declare an array

7 int i = 19; // declare an int, i

8 int* ptr = &i; // ptr holds address of i

9 cout << "array=" << array << endl; // the address of the array

10 cout <<"&i=" << &i<< endl; // the address of the int i

11 cout << "ptr=" << ptr << endl; // contents of the pointer

12 ptr = array; // assign the pointer

13 cout << "ptr=" << ptr << endl; // contents of the pointer

14 }

****** Output - Code::Blocks ******

array=0x6dfed4

&i=0x6dfed0

ptr=0x6dfed0

ptr=0x6dfed4

• Both pointers and arrays can be passed to a function. That function argument represents

an address, or pointer.

• Both pointers and arrays can be indexed. In the case of a pointer, that may be appropriate

if the pointer contains the address of an array.

CIS22B Course Notes POINTERS AND ARRAYS 73

Example 3-3 - Passing arrays and pointers to a function

1 #include <iostream>

2 using namespace std;

3

4 void printAnArray(int* ptr);

5 void printAnInt(int* ptr);

6

7 int main()

8 {

9 int a = 18;

10 int array[5] = {1,2,3,4,5};

11 int b = 19;

12 int* p = &a;

13

14 cout << "printAnInt(p): ";

15 printAnInt(p);

16 cout << "printAnInt(&b): ";

17 printAnInt(&b);

18 cout << "printAnInt(array): ";

19 printAnInt(array);

20 cout << endl;

21 cout << "printAnArray(array): ";

22 printAnArray(array);

23 cout << "printAnArray(p): ";

24 printAnArray(p);

25 cout << "printAnArray(&b): ";

26 printAnArray(&b);

27 }

28

29 void printAnArray(int* ptr)

30 {

31 for (int i = 0; i < 5; i++)

32 cout << ptr[i] << " ";

33 cout << endl;

34 }

35

36 void printAnInt(int* ptr)

37 {

38 cout << *ptr << endl;

39 }

****** Output - Code::Blocks ******

printAnInt(p): 18

printAnInt(&b): 19

printAnInt(array): 1

printAnArray(array): 1 2 3 4 5

printAnArray(p): 18 7208696 4354464 7208736 7208852

CIS22B Course Notes POINTERS AND ARRAYS 74

printAnArray(&b): 19 1 2 3 4

Explanation

Lines 14-19: Three calls to the printAnInt function. This function displays one int by

dereferencing and int pointer. These three calls demonstrate three different ways to pass a

pointer (or address) to a function – an explicit pointer, an address, and an array’s name. Notice

that in the third call (line 19) the array’s name is passed. In the printAnInt function the pointer is

dereferenced and yields only one int.

Lines 21-26: Three calls to the printAnArray function. This function displays 5 ints (of an array)

by indexing a pointer address – treating it like the address of an array. The first call (line 22) is

made by passing the address of an array. The result is as expected. The second call (line 24)

made by passing a pointer (to a single int). Notice in the result that the first value of a assumed

array is as expected – 18, but the next 4 values look “funny”. That’s because those 4 values

come from uninitialized memory addresses, offset from the address of a. Finally, the third call to

the printAnArray function, line 26 passes the address of a single int. The result is as expected for

the first value, 19. But the next four values look like the first four values of array. Why?

Because you can assume that the array data is stored in memory right next to (after) the int b.

• The address held by a pointer or the address of an array can be offset by adding or

subtracting an integer value from the array or pointer.

Example 3-4 - Offsetting the address of a pointer or an array

1 #include <iostream>

2 using namespace std;

3

4 void printAddress(int* ptr);

5

6 int main()

7 {

8 int a = 18;

9 int array[5] = {1,2,3,4,5};

10 cout << "&a: " << endl;

11 printAddress(&a);

12 cout << "array: " << endl;

13 printAddress(array);

14

15 // offset the address of the array

16 cout << "array+1=" << array+1 << " decimal: "

17 << reinterpret_cast<long>(array+1) << endl;

18 }

19

20 void printAddress(int* ptr)

21 {

22 cout << "ptr=" << ptr << " decimal: "

23 << reinterpret_cast<long>(ptr) << endl;

24 cout << "ptr+1=" << ptr+1 << " decimal: "

CIS22B Course Notes POINTERS AND ARRAYS 75

25 << reinterpret_cast<long>(ptr+1) << endl;

26 cout << "ptr+3=" << ptr+3 << " decimal: "

27 << reinterpret_cast<long>(ptr+3) << endl;

28 cout << "ptr-1=" << ptr-1 << " decimal: "

29 << reinterpret_cast<long>(ptr-1) << endl;

30 cout << endl;

31 }

****** Output - Code::Blocks ******

&a:

ptr=0x6dfeec decimal: 7208684

ptr+1=0x6dfef0 decimal: 7208688

ptr+3=0x6dfef8 decimal: 7208696

ptr-1=0x6dfee8 decimal: 7208680

array:

ptr=0x6dfed8 decimal: 7208664

ptr+1=0x6dfedc decimal: 7208668

ptr+3=0x6dfee4 decimal: 7208676

ptr-1=0x6dfed4 decimal: 7208660

array+1=0x6dfedc decimal: 7208668

• The address held by a pointer can be changed. The address of an array cannot.

Example 3-5 - Change the address held by a pointer

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 int i = 7, j = 8;

7 int arr1[3] = {1,2,3};

8 int arr2[3] = {4,5,6};

9 int* ptr;

10 ptr = &i;

11 cout << *ptr << endl;

12 ptr = &j;

13 cout << *ptr << endl;

14 ptr = arr1;

15 cout << *ptr << endl;

16 ptr = arr2;

17 cout << *ptr << endl;

18 // arr1 = arr2; // ERROR: Invalid array assignment

19 }

****** Output ******

CIS22B Course Notes POINTERS AND ARRAYS 76

7

8

1

4

Explanation

Line 10: the pointer, ptr, is assigned the address of i

Line 11: the value of i is displayed by dereferencing ptr

Line 12: ptr is moved to the address of j

Line 13: the value of j is displayed by dereferencing ptr

Line 14: ptr is moved to the address of the array, arr1

Line 15: the first element of arr1 is displayed by dereferencing ptr

Line 16: ptr is moved to the address of the array, arr2

Line 17: the first element of arr2 is displayed by dereferencing ptr

Line 18: this line is commented out – it would result in a compile error. You cannot move an

array line you do a pointer.

Example 3-6 - Traversing an array with pointers

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 int a[] = {2,3,5,7,11};

7 for (int* p = a; p < a + 5; ++p)

8 cout << *p << " ";

9 cout << endl;

10 }

****** Output ******

2 3 5 7 11

