C++ Notes

Joseph Bentley

DeAnza College
Computer Information System
November 2015

Table of Contents

COUISE INTOMMEALION ...ttt bbbttt ettt b e bbb b e eneeneeneas %
COUISE ODJECTIVES ...ttt b bbbttt e bbbt %
COUISE OULHINE ...ttt bbb bbb et e e et bbb e b neene e nes %
e =] =T3RS RPSP TSRS Vi
SOME thOUGhLS ON the CIASScveiieie e et vii

Ty i oo 0Todt o] g8 (ol O USRS 1
LAY L R O ST PSPPSR 1
GOIING STAMEA ...ttt se e ste e te s e st e et e e st e sreeeeeneesreente e 4

CommeNnts IN @ CH+ PrOGIAIM.......ccveieeieiiece e sie e et e e ste et e e e e e eeereesreeteaneesaaesreaseesseenseens 4
(o =T To oo U | OSSOSO 5
Declaring variables Where YOU Want.............ccoueiioiiieieece e 6
TYPE DOOL ..o e e 6
Namespace std and the new Header filenames.............ccccoveiiiii i, 10
MaiN() aNd the FEEUM TYPE......oiiiieieee et 11
The using directive and declarationcccccceiieie e 12

INtrOAUCTOrY Ctt CONCEPLS ...ttt ettt b bbbt 13
RETEreNCE VariabIEScoeiiiicieee e e 13
DETaAUIT ATGUIMENTS ...ttt bbbttt b ettt 21
Dynamic Memory AHOCALIONcooiiiiiiie et 24

THE NEW OPEIAION ...t bbbttt bbbt bttt 25
Dynamic Memory AHOCatioN FOr ATaYS.......cocoeiiieieie e 26
THe delete OPEIALOLoiviiieiieeee bbb 27

INErOAUCTION 1O CIASSES.vitiiiiteitieieet ettt b bbbttt et bbb be b e ene e s ene e 32
The Class DETINITIONoceeiieiicie et re e te e esneenreeneeanes 33
ClaSS EXAMPIEScvieiiciie ettt ettt et e e s b e et eese e st e e beeneesbeesbeenseabeenbeaneesreas 35
Cl1ass DEFINITION NOTESccueeieiieiieie ettt et este e teeteeseesseesseeneesseeseaneenreas 36
INTINE FUNCLIONS ..ottt ettt st b e e reeneenenneas 43
CONSE MEMDET TUNCTIONS ..ottt ettt e e e teeneesneeteeneenneas 56

MUEBDIE ...ttt b et b et et sttt b e neeneeneas 58
A= (=0 O B2 TSRS 62
MUILI-FIlE CH PrOQIaMS.......ccieeieciic ettt st ste e be e nte e saeesaeeneesraenre e 65

Command-1ine COMPIALION..........ooiiiiiiiiieee e 68

CONSLrUCIOrS aN0 DESIUCTOIS ... e.viitiiiieieeieieie ettt sttt et st sbesbesneereeneenens 69

CoNStruCtOr/DESIIUCION INOTEScvveeeeiiiesieeie et e et te e eseeeneesreeeeaneenreas 70

OVErloaded FUNCLIONScuviiiieieieie ettt sttt nnas 70
The Default CONSIIUCTONiiiiiie et nee e e neeenes 86

Instantiation of an Object Using the Default ConStructorc.ccccevveevie v, 87
Overloading Constructors and Copy CONSIIUCTONSccverierierieiiriesieeeie et 88

More constructor qUESTIONS AN ANSWETSciuveiieeiie it riee et sae e arne s 90
Constructor INItIANZALION LIST........c.coveieiiesi et sre e eneenneas 91
(0] 0) V010 0] 1 (o1 (o] gl 1N [0 (=P TPPS PR 106
SEALIC ClASS ODJECES. ...ttt b e bbbt 109
The delete operator and AESTIUCTONScvviiiiiiie ittt 110

CIS27 - Programming in C++ I

Containment, Initializers, and Default CoNStIUCIONS.oeoeeeeeee e e e e 111

(o] [Tod L A O] 11 (Dol (o] £SO TTR 115
MOFE ClaSS CONCEPLS ...vveeeeeieeieeie et ettt e s e e s et e et e st e e e s e sbe e te e st e sbe e teaseesseeteaneesreenseaneenreas 117
THE ThIS POINTE ...ttt et e b e sbe et e sneenneas 117
ChaiNING FUNCLIONSviieic ettt e e st ete e e e sraenaeeneesreeee e 119
StatiC Datad MEMDEIS.... ..ottt sbe et eneenre e e e 120
Static MeMBDEr FUNCHIONSoviiiiiiiiciee bbb 121
FRENG FUNCTIONS ...ttt sttt et esneenteeneennes 123
T a0 YA 0 AV [OSSR 124
Granting friendship t0 aNOtNEr CIASSccoviiiiieiii e 124
Granting friendship to a function of another Class...........cccceveiieiicce i, 124
Mutual FrIENASNID ..o 132
LINKEA LIS ...ttt bbbttt bbbttt 135
Function and Operator OVErOadiNgcooeiiiiiiiieieee e 141
oo (o I @A/ =T5 [T o [T [USSP S 141
Function Overloading — Which function does the compiler select?.... Error! Bookmark not
defined.

OpPerator OVEITOAUINGccuoiviiiiiiiiiieie ettt bbbt 151
Unary vs Binary, Member VS.NON-MEeMDEXccccveiiiiiiieie e 162
TYPE CONVEISIONS ...ttt bbbt bbbttt b ettt b bt e e e e e 169

Inheritance and POIYMOIPRISIMooiiiiii et 173

Tl Q=T L g Tol USROS 173
INNEITTANCE NOTESeveiiee bbbt se et bbbt ne e neas 176
INNErTANCE EXAMPIES.....c..iiiiiiiiieieee e 177
PrIvate INNEITEANCEoveieiei ettt sttt re e ens 189
MUIEIPIE TNNEITEANCE ... e 191

0100 0] 4T] USSR 195
Non-virtual vs. Virtual FUNCHIONSc.coiiiiiiei et 195
Why write @ Virtual deStrUCLOr?........cc.eiviiie et 204
Non-Virtual, Virtual, and Pure Virtual FUNCLIONScoviiiiiiiii e 208

CH++ INpUt/OULPUL & FIIE 1O .o e 220

INPUE / OULPUL CHASSES ...ttt bbbttt 220
Class/Template DESCIIPLIONSccveivieieiieeiie ettt st et e e ste e reenre e 221
(L0 EST 0 = o =TSRSS 222
INPUL/OULPUL IMANTPUIALOTS. ...ttt et saeas 241
Overloading the Insertion and EXtraction OPEratorscccveveeerierienerenese e, 244

(08 1 1= 1 ST PRPRI 249
Class/Template DESCIIPLIONSc..ooveiuiriiiiirieeiieieie ettt bbbt 250
basiC_ifStream<> MEMDEIScciiiiie e e 251
DasiC_OfStream<> MEMDEISc..eiieieeeeie ettt e e esre e e nnes 251
basiC_fStream<> MEMDEIScooiiiii e 251
More 1/O MemMbDEIS aN0 TYPESoveierierieiiiriesiieieeie ettt bbb 254
10S_DASE ClASSvi ittt 254

APPENTIX AL EXEITISES ...ttt bbbttt et e bbbt bt nes 272

EXBICISE HL...e ettt bttt h bbbt b e Rt bt n et e b e nnes 272

] (0] ST USSR 274

CIS27 - Programming in C++ ii

X IS 3 oo e oottt et e e e e e ——ttee e e e e ————a e e e e e e ——— 276

= (o TSR = SR 277
G (W == TR 281
= (o [T =< G R 283
T (o = =2 AT 285
= (o [T =S R 289
G (W == TR 292
= (o3 TSI = O 293
T (o == 1 T 294
= (03 [T =T = R 297
T (o == 1 J ST 299
= (03 [T =T = 300
G (W == K T 302
10 (= 305

CIS27 - Programming in C++ 1\

Course Information
Course Objectives

At the completion of the course, you should be able to write basic C++ programs which make
use of the following:

e reference variables

e default arguments

e dynamic memory allocation

e classes

constructors and destructors

static data members and static member functions
function overloading and operator overloading
inheritance

polymorphism

C++ input/output classes and file 1/0

Course Outline

1. Introto C++

2. Difference between C & C++: reference variables, default arguments, new and delete
3. Introduction to Classes

4. Constructors and Destructors

5. More class features: this pointer, static members, friend functions

6. Function and Operator Overloading

7. Inheritance and Polymorphism

8. Input/Output and File 1/0

9. C++ Applications & Review

10. Final

CIS27 - Programming in C++ %

Preface

These notes are not intended to be a textbook. These pages represent numerous revisions of
examples and notes of C++ concepts that | used for myself to gain an understanding of the
language over the last dozen, or so, years. Since | learn best by looking at examples, | decided
long ago to use these notes as a teaching tool. Every time | teach a class in C++ using these
notes, | find mistakes, shortcomings, inaccuracies, and explanations needed. | make a list of
corrections and notes to myself to rewrite this or that. And, even though | update the notes
almost every time | teach the class, | never get it right. 1 do believe, however, that this makes me
a better teacher — not being satisfied. I think that if I ever got it right, I’d have to quit (by then
the language would be totally obsolete).

To make effective use of these notes, you have to learn to read examples. Reading an example
of code, is not like reading anything else. It’s like, you read a line of code, then you ask
yourself:

“What does this mean?”

“Why did the author do it this way?”

“What’s that function?” (time out while you go look it up)

“What does that syntax mean?” “Who’s doing what to whom?”

“Is there another way of doing this?”

Step back ...
“What’s the point?” (do I understand the concept(s) that Joe is trying to demonstrate)

This is a time-consuming and tedious process. (I can’t read very much of someone else’s code
without getting antsy and distracted). As you become more experienced, you will be able to skip
over “obvious” lines of code and concentrate on the gist of the example. (After you’ve seen
#include <iostream> dozens of times, you won’t even think about it). To be successful in
reading examples, | recommend that you don’t try to spend a lot of time doing it. Reading one or
two examples and really getting it is better than trying to read six or ten examples and kinda”,
“sorta”, getting it.

Reading an example and getting it means that you “own the code”. It’s yours now. It doesn’t
mean memorizing it. It doesn’t even mean that you don’t have to look back see how to do that.

It means that you understand how it works and you can reproduce, when needed, the concept or
the logic (and take another look if you need to). After all, when you’re cooking lasagna, you
may have made it dozens of times, but it doesn’t hurt to have the recipe next to you when you are
making it for the fifty-first time.

Joe
January 2009

CIS27 - Programming in C++ Vi

Some thoughts on the class

The following notes represent some on my thoughts about this course.

Why learn C++?

C++ is programming language that is very much in demand today, probably the language that is
in most demand currently. It will definitely be a plus to have it on your resume.

What does the class cover?

CIS27 is a basic C++ class. Upon successful completion, you should be able to write C++ code,
to read it, to use C++ reference manuals, and to step into an entry-level C++ programming
situation. This is not an advanced class. It does not cover templates, exception handling, the
Standard Template Library (STL), RTTI, writing your own manipulators, binary trees, and object
oriented programming concepts. It is the basics, the language syntax, as well as language
concepts. There are separate courses for the advanced concepts and object oriented
programming.

What are the prerequisites?

Successful completion of a C programming class. That means a grade of A, B or C in such a
class. You do not need any significant C programming experience, but you do need to be
familiar with the basics, such as, variables, data types, for loops, while loops, input and output,
file 1/0, pointers, arrays, string functions, and basic ANSI standard functions. Do not expect to
successfully complete this class without some C experience.

How can you be successful in this class?

“Successful” probably means an “A” in the class. An “A” means you can put it on your resume.
It means that you could step into an entry-level C++ programming position and produce code
within a short time. A “B” means that you missed a little, but with a little study and work you
can be right there with the “A” types. A “C” means that there’s hope, but you’ll need to put in
some time to catch up to the “A”s. Any other grade should repeat the course, probably after
some C programming review. You’re may be taking this class to help you get (or keep) a job.
It’s the “A”s that stand the best chance.

Now, back to the question. This class is 12 weeks long. It is a fairly short time commitment.
You can be successful by doing the following:

e Meet the prerequisites. Make sure you’re comfortable with C. During the course, if you
hear of a C concept that you are not familiar with, research it, or ask about it and get it.

e Commit the time required for this course. You will need approximately 8 to 12 hours per
week outside of class to complete the assignments and do the suggested reading. If you don’t
have the time, or don’t commit to it, don’t plan on an A or B in the class (and there isn’t that
many Cs received).

CIS27 - Programming in C++ vii

e Come to class and be on time. Students who are on the road to “success”, but have to miss
a class, usually get behind. This probably translates into a full letter grade. If you “have to”
miss a class session, plan on doing lots or reading and studying to make it up. Punctuality is
especially important during the final and midterm. The tests have time limits. Final grades
have dropped a full letter, because students showed up late for a test and didn’t have enough
time.

e Get and read a textbook. The course notes are not a text book. They do not contain
detailed explanations of C++ concepts. You should acquire a source for explanations beyond
the examples in the notes. Check Appendix B for some possible books.

e Do every assignment. Start early. Learn to break up the problem into small parts. Do one
part at a time. Test your code as you proceed. This is particularly relevant when you start
writing classes and member functions. If the assignment involves writing 2 classes, then do
one at a time. Write one member function at a time, and test it. Make sure you understand
what each part is supposed to accomplish. It not, ask. When you get stuck, try to solve the
problem yourself. When you still can’t get it, ask for help (see below).

e Study for the tests. The tests are open book, but that’s not the time to start reading. You
should know exactly what topics are on the test. Do you know each one, or not? It’s fair to
ask for an explanation of some topic before the morning of the test. To study for a test
shouldn’t take long if you’ve kept up. You should be able to look at a list of topics, think
about them, and consider whether or not you thoroughly understand the topic. Is there some
syntax or notation that you do not understand about that topic?

e Ask questions. In class and out of class. It’s difficult to concentrate for 2+ hours of lecture
(no matter how brilliant and entertaining the instructor is). You need to psyche yourself up
to endure this. A good night’s sleep the night before, some Starbuck’s coffee, whatever it
takes...

e Use the lab time for some extra help, hand holding, showing you how to do it, explaining
some concept in detail, giving you a hint on an assignment.

e Talk to other students in the class about assignments, problems or various topics. This
does not mean copying. This is not a course to practice typing or copying files. You are
encouraged to discuss problems with other students, but not to copy their solution. This is
just like a programming job. You will probably consult with coworkers regarding problems,
but you cannot expect a coworker to do your work for you. If you need a hint on an
assignment, ask the instructor. Remember, you will be taking the tests by yourself.

CIS27 - Programming in C++ viii

e Asking Email Questions

You will need to ask a question (probably several) during the course. Do not hesitate to send me

an email question. You should get a reply with 24 hours. Make sure you do get a reply, if not,

send the question again, and if necessary, call me up. It’s important that you understand what is

a “fair” email question, a what is not.

It’s fair to ask me to explain line 19 of example 2-5 or to explain what is meant by the 4"

paragraph on page 317. It is not fair to ask to explain all 450 lines of example 2-7 or describe in

an email note how constructors work or explain chapter 7 in the text. It is fair to ask what a copy

constructor is.

The following are “fair” questions to ask about an assignment:

e What is causing this error message: “Call to undefined function: strcopy()” on line 54 of my
classX::funk() function? (The code is included)

e What is the purpose of the goo() function in the XYZ class?

e Can you give me a little hint about how to start writing the moo() function for ABC class?

e Did we have an example similar to the poo() function?

These are “unfair” questions to ask about an assignment:

e [don’t understand what to do?

e How do | get started?

e [don’t understand classes?

e How do I write the moo() function for ABC class?

e What is causing this error message: “Call to undefined function: strcopy()” on line 54 of my
classX::funk() function? (The code is not included)

e [D’ve got a whole bunch of error messages, what do they mean?

e What do these 3 error messages mean (messages included)? (2 is the limit)

e Can | turn the assignment late?

When you submit an email question about an assignment, make sure you include all relevant
parts of your code. If you’re not sure whether or not to include part of your program, then
include it. 1 would prefer that your code is included in the body of the note. If you want to use

an attachment, my first preference is one file attachment (even though you may have a multi-file
application).

CIS27 - Programming in C++ IX

| - Introduction to C++

Introduction to C++

What is C++ ?

it's "a better C"

it supports data abstraction

it's an Object-Oriented Programming Language

OOPLs have the following characteristics:

Encapsulation is the combining the data structure with actions. The data structure is used
to represent the properties, the state, or characteristics of objects. The actions represent
permissible behaviors of objects. These are controlled through the member functions that
are attached to objects. It is through encapsulation that an object may be much more
realistically represented - by including both the properties and the behavior in its
definition. Further, the class designer can control the user interface much easier with this
approach.

Inheritance is the ability to define a hierarchical relationship between objects that
permits objects of a more specific class to inherit the properties (data) and behaviors
(functions) of a more general class. For example, you might have dog objects with
associated properties and behaviors and also beagle objects that will have all the
properties and behaviors of dogs with a few more specific properties and behaviors of
their own.

Polymorphism is the ability for different objects to interpret messages (functions)
differently. For example, asking different shape objects (circle, square, rectangle,
trapezoid) to return their area will result in different implementations. This is
accomplished with virtual functions using "late (or dynamic) binding".

OOPLs support modular programming, ease of development and maintainability.

CIS27 - Programming in C++ 1

| - Introduction to C++

What is Object Oriented Programming? February 2009 blog

C++ is an object oriented programming language. This means that the language is oriented
toward programming with objects. Well, duh! Object oriented programming is a different
approach than you learned in C. In C++, you create classes, after thinking about the design
and what you want to accomplish, and, by the way, you usually don’t get that part right on the
first try. The class consists of members - data members or member functions. Member
functions are also called methods. They’re also called behaviors. Once you’ve created a
class, you can declare (or define) a variable of that class type. That variable can be referred to
as an object, or an instance (of the class type). You can then call a function using the object.
Another way of saying that is, “you can apply the member function to the object”. The
member function is, well, first of all, it’s just a function, meaning, it does something.
Sometimes, the member function does something to the object. Sometimes, the member
function does something for the object. Sometimes, the member function tells you something
about the object. Sometimes, the member function is used to create the object (that’s called a
constructor). Sometimes, the member functions are used to destroy, or get rid of, the object
(that’s called a destructor). Some member functions look like operators (think +-/* -> % !
~) when you called. C++ is all about accomplishing your task using objects and using the
member functions that belong to the class(es). You can’t really do anything with C++ that
can’t do with C, but once you get the hang of it, it’s, in my opinion, a more natural way of
getting the job done. Don’t expect to immediately start coding using an object oriented
approach, but may by the time you have completed this course, and have been exposed to
dozens of examples in which classes have been used in many way, something should maybe
ought to rub off.

CIS27 - Programming in C++ 2

| - Introduction to C++

C++ is "a better C", supports data abstraction, and is an effective OOPL primarily due to it use of
classes. In C++, the class is the cornerstone of the language. Yes, C++ includes new syntax,
new operators, new functions, and enhanced libraries, but it's really the implementation of
classes, that give the language its identity.

Classes are:
e a more powerful type of struct
e data (properties, characteristics, state) and behaviors (methods)

For example, a dog class may contain data members such as breed, color, height, weight, number
of feet (usually 4), eye color, etc. The class may also contain the behaviors that the dog can
exhibit (the actions that it can perform, or the methods that it can apply). The

dog may be able to sit, to run, to eat (that might affect its weight), etc. Sit, run, and eat would be
member functions of the dog class. The class itself is not data.

An object is an instance (or occurrence) of a class. For example, you might have a dog, called
Spot. Spot is an object. (Don't try to use this analogy on spouses!) Spot will possess all the
properties of dog and can perform the behaviors of a dog. You might want Spot to sit down, so
you'd say to spot: spot.sit(); That's, of course, assuming that Spot knows a little C++. The
following C++ code illustrates these concepts.

class dog
{
private:
char breed[25];
char color[20];
int height;
float weight;
int feet;
char eye color[10];
public:
void sit (void);
void eat (void);
void run (void);

b

int main (void)
{
dog spot;
spot.sit();
spot.eat () ;
spot.run();
return 0;

CIS27 - Programming in C++ 3

| - Introduction to C++

Getting Started

To get started with C++, we should dive right in, start writing code and see what’s new. This
section will address four differences between C and C++.

Writing comments in a C++ program

Using cin and cout for input and output to a C++ program (and #include <iostream>)
Declaring variables almost anywhere

Using type bool for true or false

Comments in a C++ program

In C, you learned to use the /* ... */ style comment. Since C++ includes the C language syntax,
you can, of course, use the same style comments, but C++ also includes its own style of writing a
program comment. This is accomplished using //. The // can be used any place on a program
line to mean that anything to the right of the // is intended to be a comment and not part of the
program — not compiled. An entire line may be commented, like this:

// see, this is a comment consisting of an entire line
or part of a line like this:
if (b *b -4 *a*c<O0) { /l make sure the determinant is not negative

You can use either C-style comments, /* ... */, or C++ style comments or both in your program.
The advantage of the C-style comment is that the comment can be long and span many lines, and
the advantage of the C++ comment is that it’s easier, two keystrokes instead of four. Besides,
this is all about C++ anyway. There is one word of caution. Be careful of nesting the two styles.
For example, this is OK.

/* this 1s a one-line comment */

/* this is
a comment that
goes on and on,
and ends on this line */

/* Here’s another comment // and what’s this?

Oh, who cares?
That’s all folks */

Now, here’s the rub:

// this is OK

/* nothing wrong with
this comment

*/

CIS27 - Programming in C++ 4

| - Introduction to C++

// This is a C++ style comment /* and now let’s do a
C-style comment */

/* Here’s another
// screw up */

Do you see the problem? Just be careful.

cin and cout

In learning C, you probably started with scanf() and printf() for input and output. In C++, we
will do the same thing with cin and cout. cin will be used for input from the keyboard and cout
for output to the screen.

In C, it looks like this:

printf (“Enter some number\n”);
scanf (“%d”, &1) ;

In C++, like this:

cout << “Enter some number\n”;
cin >> 1i;

scanf() and printf() are functions. cin and cout are not function they are things, or more
precisely, objects. You can think of them as the keyboard and monitor (or screen). To be more
precise, cin is an object of type istream and cout is an object of type ostream. And what about
<<and >>? These guys (guys is a technical term, more precisely, a male technical term) are
operators, just like the + in x +y. And in case you wanted to know, operators, in C++ can be the
same thing as functions.

So, of course, our two lines of code, displays Enter some number on the screen and the program
stops, waiting for the user to enter a number. It acts just like the C code.

One more point, cin and cout are not free, just like printf() and scanf() are not free. To use
printf() and scanf() you must include the header file, <stdio.h>. Similarly, in C++, for cin and
cout, you will need to include the header file, <iostream>. Note that it is <iostream>, not
<iostream.h>. We’ll get to that later.

What exactly is cin and cout?

Consider the statements,

int age;

cin >> age;

cout << “I am “ << age << ™ years old.” << endl;

CIS27 - Programming in C++ 5

| - Introduction to C++

In C we would write,

int age;
scanf (“%d”, &age) ;
printf (I am %d years old.\n”,39);

These two statements do the same thing. cin and cout are objects. This means that they are
variables of a certain type (specially they are variables of type istream and ostream). They are
not functions, like printf() and scanf(). The function part of the statements is the >> and <<
operators. And, while we’re at it, endl is almost the same as \n .

Declaring variables where you want

In C you learned to declare variables at the beginning of a function and in C++ you can do the
same thing. That, of course, would be too boring. So, there’s another way. You can declare
variables where you need them. Variables do not have to be declared at the beginning of your
program, or the beginning of a function, or at the top of a block. They can be declared just
before you use them. Of course, you can’t declare them after you use them. For example, in C
you would:

int x;
printf (“Enter some number\n”);
scanf (“%d”, &x) ;

And is C++, you can do this:

printf (“Enter some number\n”);
int x;
scanf (“%d”, &x) ;

There is the advantage or declaring variables at the top of a function. The reader of the code
(that might be you in six months), knows where to look for variable declarations. On the other
hand, being able to declare variable any old time allows you to write code without a lot of up
front planning. That’s a good thing, right?

Type bool

ANSI/ISO C++ includes a type called bool to store true-false values. This concept has been
around forever in programming and in C and even C++. | guess the only issue was settling on
the name of the type. An obvious application might look like this:

bool rich;
rich = money > 1000000;
if (rich) {

cout << “Whoopee!”;

}

CIS27 - Programming in C++ 6

| - Introduction to C++

Here is the first example that demonstrates the some initial C++ concepts and some differences
between C and C++.

Example 1-1

1 // File: Exl-1l.cpp

2

3 // Illustrates some of the basic differences between C and C++:

4 // Comments

5 // cin and cout for input and output

6 // declarations of variables almost anywhere

7 // use of type bool

8

9 #include <iostream> // instead of <stdio.h> or <iostream.h>
10 using namespace std;

11

12 /* You can still use the old comment, */

13

14 /* but you must be // very careful

15 about mixing them */

16

17 // Your best bet is to use this style for 1 line or a partial line
18 /* And use this style when your comment

19 consists of multiple lines */

20

21 1int main (void)

22 |

23 cout << "hey"; // Why won't printf or puts work here?
24 //printf ("hey");

25 //puts ("hey") ; // Can you use printf or puts in a C++ program?
26

27 for (int k = 1; k < 5; k++) // declare a variable when you need it
28 {

29 cout << k;

30 }

31 //cout << k;

32 cout << endl; // print a carriage return (newline)
33

34 cout << "Please enter your name => ";

35

36 char name[10]; // 1 feel like declaring a variable
37

38 cin >> name;

39

40 cout << "Hey " << name << ", nice name." << endl;

41

42 cout << endl; // blank line

43

44 cout << "Hey " << name << ", how old are you? ";

CIS27 - Programming in C++ 7

| - Introduction to C++

45

46 int age; // Declare another variable
47 cin >> age;

48

49 bool IsOld = age > 35;

50 bool IsYoung = !Is01d;

51 cout << IsOld << ' ' << IsYoung << endl;

52

53 if (Is0Old) cout << name << ", you don't really look that old!\n;
54

55 char dogs name[10];

56 int cats;

57

58 cout << "What's your dog's name and how many cats do you have? "
59 << endl;

60

61 cin >> dogs name >> cats;

62

63 cout << "I'll bet " << dogs name << " 1is a good dog and your "
64 << cats << " cat" << (cats>1?"s are":" 1is") << " nice too\n";
65

66 {

67 // This is a block

68 int x = 5; // x is local to this block

69 cout << x;

70 }

71

72 // cout << x; What would happen if you tried to print x now?
73

74 return 0;

75 }

* Kk Kk kK Sample Run K’k Kk kK

hey1234
Please enter your name => Joe
Hey Joe, nice name.

Hey Joe, how old are you? 34

01

What's your dog's name and how many cats do you have?
Bart 2

I'll bet Bart is a good dog and your 2 cats are nice too
5

Note: cin is similar to scanf(), but does not require conversion specifiers and whitespace is a
separator for multiple variables. cin does not require the address operator (&), like scanf().

<< ("left-shift" in C) is called the insertion operator. >> ("right shift") is called the extraction
operator.

CIS27 - Programming in C++ 8

| - Introduction to C++

Note on for loops with MS Visual C++ 6.0: First of all, you should not be using MS Visual
C++, it’s too old. But, if you insist, the following code does not work according to the C++
“standard”. The “standard” specifies that k will only “have scope” for the for loop, and after
completion of the for loop, k will be undefined. MS Visual C++ 6.0 doesn’t see it that way.
You’ve been warned!

for (int k = 1; k < 5; k++)
{

cout << k;
}

CIS27 - Programming in C++ 9

| - Introduction to C++

Namespace std and the new Header filenames

The namespace keyword of C++ is used to group related data and functions. For example, if
two sources provide a function called strcpy(). You may distinguish between them by prefacing
strcpy() with the namespace, like VendorA::strcpy() or std::strcpy(). The namespace std is used
to identify the standard ANSI/ISO symbols (functions, classes, and variables). The ANSI/ISO
standards committee stipulated that standard header files would not have a filename extension.
So, the header file, iostream.h will be identified as just iostream. The standard C header
filenames, such as math.h, string.h, etc. will be prefaced with a ¢ and the extension is dropped.
Hence, math.h and string.h become cmath and cstring.

Example 1-2 namespace std and ANSI/ISO standard header files

// File: exl-2.cpp - namespace std and the new header filenames

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <cctype>
using namespace std;

O J oy U b W N

e

10 // Create a namespace
11 namespace mystuff

12 {

13 int cout = 5;

14 double sqgrt (double x)

15 {

16 return x / 2.0;

17 }

18 }

19

20 int main(void)

21 {

22 char cout[32] = "This 1is a bad idea";

23 char temp[80];

24 std::cout << "hey\n";

25 std::cout << "the square root of 2 is " << sqgrt(2.) << endl;
26 strcpy (temp, "hello");

27 strcat (temp," there");

28 std::cout << strlen(temp) << temp << endl;

29 std::cout << atoi("4") << endl;

30 std::cout << toupper('a') << endl;

31 std::cout << (char)toupper('a') << endl;

32

33 std::cout << mystuff::cout << ' ' << cout << endl;
34

35 std::cout << sgrt(5.75) << ' ' << mystuff::sqrt(5.75)! << endl;

! Digital Mars C++ compiler (ver 8.42) produces a compile error on line 35 (suspect this is a bug).

CIS27 - Programming in C++ 10

| - Introduction to C++

36 return O;
37 }

* Kk Kk kkx Program Output * Kk ok kkx
hey

the square root of 2 is 1.41421
llhello there

4

65

A

5 This is a bad idea
2.39792 2.875

Note that symbols default to their local definitions first, then to std definitions.
main() and the return type
The C++ standard specifies that main() must return an int. That is, you must define main() like

int main()

{

or

int main (void)

{

or

int main(int argc, char* argv[])

{

You may not define main() as

void main()

{

or

CIS27 - Programming in C++ 11

| - Introduction to C++

main()

{

You do not, however, have to end main() with a return statement. If the end of main() is reached
without a return statement, a return of 0 is assumed.

The using directive and declaration

The keyword using is used as both a compiler directive and as a declaration. Throughout this
text, the “using namespace std” directive directs the compiler to make available all of the “std”
names. So, for example,

#include <iostream>
using namespace std;

tells the compiler to recognize the names: cin, cout, endl, and others in whatever scope these two
lines appear. Without the “using namespace std;” directive, the user would still have to qualify
the the cin, cout, and endl identifiers as std::cin, std::cout, and std::endl;

Another approach is the using declaration, like this:

#include <iostream>

using std::cout;
using std::endl;

cout << ...

Now, the user can use the identifiers cout and endl without the std namespace, but only those std
identifiers. The using declaration adds an identifier to the current scope.

CIS27 - Programming in C++ 12

Il — Introductory C++ Concepts

Introductory C++ Concepts
Reference Variables

A reference variable is an alias for another variable. It is similar to a pointer in that it contains
the address of a variable, but unlike a pointer, you do not need to perform any dereferencing
yourself.

Reference variables must be initialized when they are declared, and they cannot be reassigned to
refer to another variable.

Examples:
float pie = 3.14;
float& apple = pie;

Here’s a little piece of code that shows how a reference works, but it’s not very realistic, because
it doesn’t make sense to use a reference for another variable in the same function.

int x = 5;

int &z = x; // z 1is another name for x
cout << x << endl; -> prints 5

cout << z << endl; -> prints 5

z = 9; // same as x = 9;
cout << x << endl; -> prints 9

cout << z << endl; -> prints 9

Important rule: You must initialize references.

You may not declare a reference variable, like this:
inté& ri;

Don’t confuse it with the legal declaration of a pointer:
int* pi;

Guideline: References are used as function arguments (or parameters) or return types.

CIS27 - Programming in C++ 13

Il — Introductory C++ Concepts

Example 2-1

This example compares two swap functions. p_swap is written as the traditional swap function
(that you would write in C). r_swap is the equivalent version which uses references. Note the
advantage of using references:

1. you don’t have to pass the address of a variable

2. you don’t have to dereference the variable inside the called function.

// File: ex2-1.cpp Reference Variables - swap functions

#include <iostream>
using namespace std;

// Function prototypes (required in C++)
void pointerSwap (int*, int*);
void referenceSwap (int& il, int& i2);

O J o O W DN

NeJ

10 int main (void)

11 {

12 int x = 5;

13 int yv = 7;

14

15 cout << x << ' ' << y << endl;
16

17 pointerSwap (&x, &y) ;

18

19 cout << x << ' ' << y << endl;
20

21 referenceSwap (x,Vy) ;

22

23 cout << x << ' ' << y << endl;
24

25 return 0;

26 '}

27

28 void pointerSwap (int *a, int *Db)
29 |

30 int temp;

31 temp = *a;

32 *a = *b;

33 *b = temp;

34 }

35

36 void referenceSwap(int &a, int &b)
37 |

38 int temp;

39 temp = a;
40 a = b;

41 b = temp;
42}

CIS27 - Programming in C++ 14

Il — Introductory C++ Concepts

* Kk Kk kKk

U1 J O
~J O 3

Output ****xx

€<- line 19 output
€<- line 23 output

Program Analysis

This is an extensive analysis of this simple program. Probably more than you want to read
about, but it should give you some ideas about how you should analyze an example. Some of the
really obvious details were skipped, but you still thought about them.

Line 7

Line 8
Line 17

Line 19
Line 21

Line 28

Line 31

Line 32

Line 36

Line 39

This, of course, is a prototype for a function that takes two pointer to int arguments.
And, by the way what if the function prototype was written like?

void pointerSwap(int* nl, int* n2); or
void pointerSwap (int* a, int* Db); or
void pointerSwap(int *nl, int *n2); or
void pointerSwap (int* nl, int *n2); or
void pointerSwap(int *, int *); or

It doesn’t matter, they all mean the same thing. The * can be next to the int or next
to a variable, or the variable doesn’t even have to be there. This is just a style
consideration.

The int& function arguments mean that the arguments are references to int.

Call the pointerSwap() function are pass in the addresses of two ints. Notice, that
the was described (in the prototype discussion) as taking two pointer to int
arguments, but when the function call is made here, you say that “the addresses of
two ints” are passed in. You are, of course, familiar with this terminology from you
C education.

Here we see evidence that the pointer swap worked.

In the call to the referenceSwap() function, note that the variable a just passed in (no
addresses), just like a “pass by value”. You know what that means, right?

In the function definition heading, the function argument variable names do not
have to match the variable names used in the function prototype. In the function
argument, int *a, the * means that a is a pointer to an int, or the address of an int.
*a, here means dereference a,or take the value stored at the pointer address.

Notice, here, that *a can be used as an “L value”. In the line above, it is used as an
“R value”.

The argument, int &a (or int& a), means that a is a refererce to an int, or a refers to
an int that exists elsewhere.

Notice than when you use the reference, you don’t need to defererence it. Herre’s a
secret — C++ accomplishes the reference utilization using pointers, but that none of
your business!

CIS27 - Programming in C++ 15

Il — Introductory C++ Concepts

It's often desirable to use a reference to a constant type to prevent changes to the referenced
variable.

Example 2-2

This example shows function parameters passed as a reference and passed as a reference to
const.

1 // File: ex2-2.cpp Reference Variables - function parameters
2

3 #include <iostream>

4 using namespace std;

5

6 void update_salary(double& sal)
7 A

8 sal *= 1.1;

9 return;

10 }

11

12 void display salary(const double &sal)
13 {

14 cout << sal << endl;

15 return;

16 '}

17

18

19 int main (void)

20 |

21 double salary = 50000.;

22

23 display salary(salary);

24

25 update salary(salary);

26

27 display salary(salary);

28

29 return 0;

30 1}

) Kk Kk kK Sample Run * Kk k ok ok

50000
55000

With reference variables, the & may be attached to either the variable type or the variable name
as demonstrated in this example.

CIS27 - Programming in C++ 16

Il — Introductory C++ Concepts

Example 2-3

This example illustrates the use of references as function parameters in an example that is a little
more sophisticated. The purpose of the example is determine won, lost and tied statistics for
some teams. The example is a little shallow, but it does make use of references to structs.
Before you read the example, take a look at the sample program run at the end, so you get the
gist of what it’s trying to accomplish.

O J o O b W DN

R W W W W W W wWwwww NN PR R R R R R RO
N PO W oo Jo b wWwNhEkE O WwWwOowJo Uld WNhE O WOoJoy Uuldbd WP O

// File: ex2-3.cpp Reference Variables - function parameters

#include <iostream>
#include <cstring>
using namespace std;

const int NumTeams = 5; // better than #define NumTeams 5
const int NumScores = 11;

// a team struct contains a team name and its W-L-T totals
struct team {

char name[10];

unsigned won;

unsigned lost;

unsigned tied;

}i

// the league struct contains an array of team structs
struct league {
team teams [NumTeams] ;

};

// this struct hold 2 team names and their points scored in a game
struct score {

char teamname [2] [10];

unsigned points[2];

}s

// function prototypes

void initializeleague (leagueé& L);

void enterScores (score* S);

int getTeamNumFromName (league& L, const char* Name) ;
void updateWonLostTied (league& L, score* S);

void printLeagueStats (league& L) ;

int main (void) {
league Birds;
score Scores [NumScores];

initializeLeague (Birds) ;
enterScores (Scores) ;
updateWonLostTied (Birds, Scores) ;

CIS27 - Programming in C++ 17

Il — Introductory C++ Concepts

43 printLeagueStats (Birds) ;
44

45 return 0;

46 }

47

48 // Assign team names and zero out won, lost, tied
49 wvoid initializeleague (league& L) {

50 for (int 1 = 0; 1 < NumTeams; 1++)

51 {

52 cout << "Enter team name => ";

53 cin >> L.teams[i] .name;

54 L.teams[i1] .won = 0O;

55 L.teams[1].lost = 0;

56 L.teams[1].tied = 0;

57 }

58 cout << endl << NumTeams << " teams initialized\n\n";

59 }

60

61 wvoid enterScores(score* S) {

62 cout << "Enter " << NumScores << " scores:\n";

63 for (int 1 = 0; i1 < NumScores; i++)

64 {

65 cout << "<team #1> <score #1> <team #2> <score #2> => ";
66 cin >> S[i].teamname[0] >> S[i].points[0]

67 >> S[i].teamname[l] >> S[i].points[1l];

68 }

69 cout << endl << NumScores << " scores entered\n\n";

70}

71

72 // getTeamNumFromName () returns the index of the teams array
73 // (in the league struct) in which Name matchs the value
74 // of the league.teams[i].name. If no match is found, the

75 // function return -1
76 int getTeamNumFromName (leagueé& L, const char* Name) {

77 for (int 1 = 0; 1 < NumTeams; 1++)

78 {

79 if (strcmp(L.teams[i].name,Name) == 0) return i;
80 }

81 cerr << "Error: unable to find team: " << Name << endl;
82 return -1; // team name not found

83 }

84

85 wvoid updateWonlLostTied(league& L, score* S) {

86 int i, team0, teaml;

87

88 for (i = 0; 1 < NumScores; i++) {

89 team0 = getTeamNumFromName (L,S[1].teamname([0]) ;
90 teaml = getTeamNumFromName (L,S[i].teamname[1l]);
91

92 // 1f team name is bad, don't use the score

93 if (team0 == -1 || teaml == -1) continue;

CIS27 - Programming in C++ 18

Il — Introductory C++ Concepts

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

if

}
if

}

i

}

void
int

(S[i] .points[0] > S[i].points[1l]) { // team0 won
L.teams[team0O] .won++;
L.teams|[teaml].lost++;

(S[i].points[0] < S[i].points[1l]) { // teaml won
L.teams[teaml] .won++;
L.teams|[teamO].lost++;

f (S[i].points[0] == S[i].points[1l]) { // tie game
L.teams[teamO].tied++;
L.teams[teaml].tied++;

printLeagueStats (leagueé& L) {
i;

cout << "\nName\tWon\tLost\tTied\n";

for

(1 = 0; 1 < NumTeams; i++) {

cout << L.teams[1].name << '\t'

<< L.teams[i].won << "\t'
<< L.teams[1].lost << '"\t'
<< L.teams[1].tied << '\n';

/************************ Sample Run Rk b b b b b b b b b b b b b b b b b I SR S S b i o

Enter
Enter
Enter
Enter
Enter

team name => coots
team name => ducks
team name => eagles
team name => finches
team name => geese

5 teams initialized

Enter

<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>
<team #1>

11 scores

11 scores:

<score #1> <team #2> <score #2> => coots 5 ducks 2
<score #1> <team #2> <score #2> => coots 3 eagles 7
<score #1> <team #2> <score #2> => coots 1 finches 0
<score #1> <team #2> <score #2> => coots 0 geese 0
<score #1> <team #2> <score #2> => ducks 1 eagles 4
<score #1> <team #2> <score #2> => ducks 5 finches 2
<score #1> <team #2> <score #2> => ducks 2 geese 1

<score #1> <team #2> <score #2> => eagles 7 finches 7
<score #1> <team #2> <score #2> => eagles 8 geese 5
<score #1> <team #2> <score #2> => finches 3 geese 2
<score #1> <team #2> <score #2> => gooses 9 ducks 2

entered

CIS27 - Programming in C++ 19

Il — Introductory C++ Concepts

Error: unable to find team: gooses
Name Won i
coots
ducks
eagles
finches
geese

ost

L T
1 1
2 0
0 1
2 1
3 1

O WD

**/

CIS27 - Programming in C++ 20

Il — Introductory C++ Concepts

Default Arguments

Default arguments is a shortcut that is not available in C. It allows function arguments to
automatically be provided in the function call. Default arguments are commonly used when a
function is called repeatedly using the same argument value(s)

Here’s an example of a function, power(), that has a default argument.

Example 2-4

// File: ex2-4.cpp

#include <iostream>
using namespace std;

long power (int,int =

o J oy U b Wb

int main(void)

{

10 cout << power (5)
11 cout << power (2,10)
12 cout << power (12345)
13

14 return 0;

15 }

16

17

18 long power (int x, int y)
19 {

e

20 long num = 1;

21 for (int 1 = 1; i <= y;
22 return num;

23}

<< endl;
<< endl;
<< endl;

i++)

2); // function prototype with default argument

// use default argument
// don’t use default argument
// use default argument

num *= x;

) Kk Kk kK * Kk Kk kK

Sample Output

25
1024
152399025

CIS27 - Programming in C++

21

Il — Introductory C++ Concepts

A function may possess several default arguments. Such as ...
void funkl (int, double, int = 5, double = 3.14);
or

int funk2 (int = 1, int = 2, int = 3, int = 4);
Call’s to funkl could look like:

funkl(2,3.14,6,1.23) // all arguments are supplied

or
funkl (2,3.14,6) // the same as funkl(2,3.14,6,3.14)
or
funkl (2,3.14) // the same as funkl(2,3.14,5,3.14)

Calls to funk?2 could look like:

funk2(2,4,6,8) // all arguments are supplied
or

funk2 (2, 4, 6) // the same as funk2(2,4,6,4)
or

funk2 (2, 4) // the same as funk2(2,4,3,4)
or

funk?2 (2) // the same as funk2(2,2,3,4)
or

funk?2 () // all arguments are default

Notes

e Ina function argument list, mandatory arguments may never follow default arguments. For
example, funk(int,int,int=2,int=5) is OK, but funk(int,int=3,int,int=6) is not OK. Default
arguments must come at the end of the argument list.

e Default arguments should be placed in the function prototype, not the function heading. This
(strong) recommendation should be followed, even if your compiler permits the default
argument in the function heading. The exception to this is the situation where the function is
defined before it is called and, in this case, the prototype is not necessary.

CIS27 - Programming in C++ 22

Il — Introductory C++ Concepts

e Default arguments may not be repeated in both the function prototype and the heading of the
function definition.

CIS27 - Programming in C++ 23

Il — Introductory C++ Concepts

Dynamic Memory Allocation

In C and C++ three types of memory are used by programs:

Static memory - where global and static variables live

Stack memory - "scratch pad” memory that is used by automatic variables.

Heap memory - (or free store memory) memory that may be dynamically allocated at execution

time. This memory must be "managed”. This memory is accessed using pointers.

Computer Memory

Static Memory
Global Variables
Static Variables

Heap Memory (or free store)
Dynamically Allocated Memory
(Unnamed variables)

Stack Memory
Auto Variables
Function parameters

In C, the malloc(), calloc(), and realloc() functions are used to dynamically allocate memory
from the Heap.

In C++, this is accomplished using the new and delete operators.

Dynamic memory allocation permits the user to create "variable-length" arrays, since only the
memory that is needed may be allocated.

CIS27 - Programming in C++ 24

Il — Introductory C++ Concepts

The new operator

new is used to allocate memory during execution time. new returns a pointer to the address
where the object is to be stored. new always returns a pointer to the type that follows the new.

Example: allocate memory for 1 int

int *p; // declare a pointer to int
P = new int; // p points to the heap space allocated for the int

Example: allocate memory for a float value

float *f = new float; // f points to a float in the heap space

More examples:

char* ptr char = new char;
double *trouble = new double;
int** ptr ptr int = new int¥*;

struct employee record

{
char empnol[7];
char name[26];
char orgn([5];
float salary;

b

employee record* harry = new employee record;

v What is harry?

int *p = new int(6); // allocated and assigns

CIS27 - Programming in C++ 25

Il — Introductory C++ Concepts

Dynamic Memory Allocation for Arrays

Example - allocate memory for 10 ints

int* ten ints = new int[10];

ten_ints is a pointer to the first of 10 ints. They will be stored in contiguous memory, so that you
can access the memory like an array. For example, ten_ints[0] is the address of the first int in
heap memory, ten_ints[1] is the address of the second int and so on ...

It sort of looks like this:

Stack memory Heap memory

ten_ints

[—F—[[[T T T [[T T]

Type* pType = new Type[25];

Note: Even though you allocate memory for an array of Type with new, it always returns a
pointer to the Type.

Example - allocate memory for a two-dimensional array
int (*p2d) [4] = new int([3][4];
Example - allocate memory for a string

char* text = new char[4];
strcpy (text, "hey") ;

If you attempt to dynamically allocate memory and it is not available, new will throw a
bad_alloc exception. In pre-standard C++ new would return a value of 0 (or a null pointer), like
malloc() in C, and most C++ programmers would use a test for 0 to check for failure of the
allocation. Even though compiler manufacturers were slow to adopt this policy, most now
conform to this standard. In this age of vast memory sizes, the failure of new is uncommon and
more often than not, indicates a problem from a different source. Programmers are advised to
adopt exception handling techniques (not covered in this course) for identification of this
situation.

Note: you may not initialize a dynamically allocated array as you do a single value.
Specifically,
int* pi = new int[5](0); /I this is illegal

CIS27 - Programming in C++ 26

Il — Introductory C++ Concepts

The delete operator

The delete operator is used to release the memory that was previously allocated with new. The
delete operator does not clear the released memory, nor does it change the value of the pointer
that holds the address of the allocated memory. It is probably a good idea to set the pointer to
the released memory to 0. To release memory for an array that was allocated dynamically, use []
(empty braces) after the delete operator.

Examples:
int *pi = new int;

delete pi;
double *pd = new double[100];

delete [] pd;

Example 2-5 - Dynamic memory allocation

1 // File: ex2-5.cpp

2

3 #include <iostream>

4 4#include <cstdlib>

5 #include <new>

6 using namespace std;

7

8 int main()

9 |

10

11 int 1i;

12 int* pint;

13 try {

14 pint = new int[99999];

15 cout << "memory is cheap\n";

16 }

17 // 1f the dynamic memory allocation fails, new throws a bad alloc
18 catch (bad alloc& uhoh) {

19 cerr << uhoh.what () << endl; //displays "bad allocation"
20 }

21

22 for (i = 0; 1 < 99999; i++) pint[i] = 0;
23

24 delete [] pint;

25

26 pint = 0;

27 '}

* Kk Kk Kk kK Output * Kk kK kK

CIS27 - Programming in C++ 27

Il — Introductory C++ Concepts

memory is cheap

CIS27 - Programming in C++ 28

Il — Introductory C++ Concepts

Example 2-6 - Dynamic Memory Allocation for char arrays

This example illustrates dynamically allocating memory to store char arrays. Storage for an
array of pointers to the char arrays is not (but could be) allocated dynamically. Note each char
array (name) can have a different length. Only the space required for each char array is
allocated.

1 // File: ex2-6.cpp

2

3 #include <iostream>

4 #include <cstring>

5 using namespace std;

6

7 int main (void)

8

9 int 1i;

10 char * names[7]; // declare array of pointers to char
11 char temp[1l6];

12

13 // read in 7 names and dynamically allocate storage for each
14 for (i = 0; 1 < 7; i++)

15 {

16 cout << "Enter a name => ";

17 cin >> temp;

18 names[i] = new char[strlen(temp) + 1];

19

20 // copy the name to the newly allocated address
21 strcpy (names[i], temp) ;

22 }

23

24 // print out the names

25 for (i = 0; 1 < 7; i ++) cout << names[i] << endl;

26

27 // return the allocated memory for each name

28 for (i = 0; 1 < 7; i++) delete [] names[i];

29 return O;

30 }

* kK kKK Sample Run Kk kK kKK

Enter a name => Joe
Enter a name => Bob
Enter a name => Harry
Enter a name => Mary
Enter a name => Fred
Enter a name => Frank
Enter a name => Susan
Joe

Bob

Harry

CIS27 - Programming in C++ 29

Il — Introductory C++ Concepts

Mary
Fred
Frank
Susan

The following illustrates the memory used in the last example:

Stack Memory Heap Memory
names

o »|J |0 |e [\0

e > B|o|[b |\

. > Hla[r |r|y]|V]

° »M|a |r |y |\

o »F|r|e|d]|\0

° » F|r |a|n \0

° > S|{u|s|afn]|\0

Here’s another solution for the last problem:

Example 2-7 - Dynamic Memory Allocation for char arrays

1 // File: ex2-7.cpp

2

3 #include <iostream>

4 #include <cstring>

5 using namespace std;

6

7 int main ()

8

9 int 1i;

10 char ** names; // declare pointer to pointer to char
11 char temp[1l6];

12 int NumberOfNames = 7;

13

14 names = new char* [NumberOfNames];

15

16 // read in 7 names and dynamically allocate storage for each
17 for (i = 0; 1 < NumberOfNames; 1i++)

18 {

19 cout << "Enter a name => ";

20 cin >> temp;

21 names[i] = new char[strlen(temp) + 1];

22

23 // copy the name to the newly allocated address
24 strcpy (names[i], temp) ;

25 }

26

27 // print out the names

CIS27 - Programming in C++ 30

Il — Introductory C++ Concepts

28 for (i = 0; 1 < NumberOfNames; i ++) cout << names[i] << endl;
29

30 // return the allocated memory for each name

31 for (i = 0; 1 < NumberOfNames; i++) delete [] names[i];

32

33 delete [] names;

34 }

* Kk Kk k kK Sample Run * Kk Kk kKK

Enter a name => Joe
Enter a name => Bob
Enter a name => Harry
Enter a name => Mary
Enter a name => Fred
Enter a name => Frank
Enter a name => Susan
Joe

Bob

Harry

Mary

Fred

Frank

Susan

Here is what memory looks like for this example:

Stack Heap Memory
names
| ° ° Llo|e [\
° B|lo|b |\
o Hla|[r[r|y]|V]
® L Mia|[r [y [\
° B|(r (e |df|\0
° - B|r [a|n \0
° -S-(u|s |a|n|\0

v What happens on line 20 when the user enters a name longer than 16 characters?

CIS27 - Programming in C++ 31

11 — Introduction to Classes

Introduction to Classes

It is C++ classes that make possible encapsulation, data hiding, inheritance and what C++ is all
aboult.

Classes are an extension of structures. A class is a user-defined type. Classes include both data
members and member functions.

Structures

struct thing
{
int a;
char b;
float c;
)i

int main (void)
{
int 1i;
thing x;
thing y;
thing stuff[10];
thing * ptr to a thing;

ptr to a thing = &y;

i = (*ptr to a thing).a; // same as i1 = ptr to_a thing->a;

CIS27 - Programming in C++ 32

11 — Introduction to Classes

The Class Definition

Class members, functions and data, are identified with an access-specifier, private, public, or
protected. Private and protected members may only be accessed by member functions of the
class (except for friend functions). Public members may be accessed wherever they are "in
scope".

Class member functions are defined using the class name and the scope resolution operator :: .

A class definition describes what a class is and what it does, or maybe what you can do to it. It
consists of the keyword class, followed by a class name, opening and closing braces and a
semicolon at the end. It may contain members, similar to a struct. The members are of two
types, data and functions. It may also contain access specifiers, type definitions, nested classes,
and possibly the specifications of friend functions.

class thing {

private: // it’s most common for data members
int a; // to be private or protected
char b;
float c;

protected: // protected members used with inheritance
(some data and functions)

public:
void funkl (void) ; // member function prototypes

void funk2 (int);
int funk3(float,char,int);
bi

// member function definitions

void thing: : funkl (void)
{

}

void thing::funk2 (int x)
{

}

int thing::funk3(float £, char ch, int i)
{

}

int main (void)

{
thing one, two, three;
thing array[10];

one. funkl () ; // What is this?
// one.a = 5; // Why won’t this work?

CIS27 - Programming in C++ 33

11 — Introduction to Classes

v What are one, two, three and array?

CIS27 - Programming in C++ 34

11 — Introduction to Classes

Class Examples

Example 3-1 - The circle class

1 // File: ex3-1l.cpp - the circle class
2

3 #include <iostream>

4 using namespace std;

5

6 class circle

7 A

8 private:

9 double radius;

10 public:

11 vold store (double);
12 double area (void);
13 void display (void);
14 };

15

16 // member function definitions
17 wvoid circle: :store(double r)

18 {

19 radius = r;

20 return;

21}

22

23 double circle::area(void)

24 |

25 return 3.14 * radius * radius;
26}

27

28 wvoid circle: :display(void)

29 |

30 cout << radius << endl;

31 return;

32 }

33

34 int main(void)

35 {

36 circle c; // instance (object) of circle class
37 c.store(5.0);

38 cout << "The area of circle ¢ is " << c.area() << endl;
39 cout << "Circle c¢ has radius ";
40 c.display();

41 return 0;

42 }

*khkkkkk Output *khkkkkikk

The area of circle ¢ is 78.5
Circle ¢ has radius 5

CIS27 - Programming in C++ 35

11 — Introduction to Classes

Class Definition Notes

e The default access specifier is private, so if an access specifier does not appear before class
members, then the members are private.

e Members, public, private, or protected, may appear in any order in the class definition.
Further, access specifiers may be repeated within the class definition.

e Private members are not accessible (visible) to functions that are not members of the the
class. This principle is referred to as data hiding.

e Member functions are defined after the class definition, or in a separate file, that “includes”
the class definition.

e A semicolon is required at the end of each declaration, function or data member, within the
class definition. An exception to this rule involves implicit inline functions. Further, it is
possible to declare multiple data members of the same type using a comma to separate them.

e Data members are usually private or protected. A public data member does not have the
protection of the class. Functions are may be public, private or protected. Public member
functions are part of the class interface. Clients (other non-class functions) may only access
class objects using the public member functions. Member functions may be private. A
private member function may only be accessed by another member function of the same
class. The exception to this is a friend function (to be discussed later).

e Classes and structs are the same in C++ with one exception. In classes, the default access
specifier is private, in structs, it’s public.

e Member functions are also called methods, behaviors or messages

e Variables or instances of a classes that are declared in a program are called objects. Member
functions may be executed using a class object or by dereferencing a pointer to a class object.
For example:

class X
{
public:
int funk(); // a member function

}s

X ray;
X* pX;
pX = &ray;

ray.funk () ; // execution of a member function using an object
pX->funk () ; // execution of a member function using a pointer
// to a class object

CIS27 - Programming in C++ 36

11 — Introduction to Classes

CIS27 - Programming in C++ 37

11 — Introduction to Classes

Example 3-2 - The triangle class

1 // File ex3-2.cpp - the triangle class
2

3 #include <iostream>

4 using namespace std;

5

6 class triangle

7 A

8 private:

9 double base;

10 double height;

11 double area;

12 public:

13 void store (double, double);
14 void calc area(void);

15 void show (void) ;

16 };

17

18 // member function definitions
19 void triangle::store(double b, double h) {

20 base = b;

21 height = h;

22 return; // “return” is optional

23}

24

25 void triangle::calc_area(void) {

26 area = .5 * base * height;

27 return;

28 }

29

30 wvoid triangle: :show(void) {

31 cout << "base = " << base;

32 cout << " height = " << height;

33 cout << " area = " << area << endl;

34 return;

35 }

36

37 int main(void)

38 {

39 triangle t; // an instance of the triangle class
40 t.store(1.23,4.55); // initialize triangle t
41 t.calc area(); // calculate the area of triangle t
42 t.show() ; // display triangle t data
43 return 0;

44 }

* kK kKK Output * kK kKK

base = 1.23 height = 4.55 area = 2.79825

CIS27 - Programming in C++ 38

11 — Introduction to Classes

Example 3-3 - The fraction Class

1 // File: ex3-3.cpp - the fraction class

2

3 #include <iostream>

4 #include <cstdlib> // for abs ()
5

6

7

8

using namespace std;

class fraction {

public:
9 void set (int n, int d);
10 void display (void) ;
11 void add(fractioné&, fractionég):;
12 void subtract (fractioné&, fraction&);
13 void multiply(fraction&, fractioné);
14 void divide (fractioné&, fractioné&);
15 volid reduce (void) ;
16 private:
17 int numer; // numerator
18 int denom; // denominator
19 };
20
21 wvoid fraction::set(int n, int d)
22 {
23 numer = nj;
24 denom = d;
25 return;
26 }
27
28 wvoid fraction::display(void)
29 |
30 cout << numer << '/' << denom << endl;
31 return;
32}
33
34 wvoid fraction::add(fraction& f1, fraction& £2)
35 {
36 numer = fl.numer * f2.denom + f2.numer * fl.denom;
37 denom = fl.denom * f2.denom;
38 return;
39 }
40
41 wvoid fraction::multiply (fractioné& f1, fraction& £2)
42 {
43 numer = fl.numer * f2.numer;
44 denom = fl.denom * f2.denom;
45 '}
46
47 wvoid fraction: :reduce ()
48 {
49 int min; // the minimum of the denom and numer
50 min = abs (denom) < abs (numer) ? abs (denom) : abs (numer):;

CIS27 - Programming in C++ 39

11 — Introduction to Classes

51 for (int i = 2; 1 <= min; i++)

52 {

53 while ((abs(numer) % i == 0) && (abs(denom) % 1 == 0))
54 {

55 numer /= 1i;

56 denom /= 1i;

57 }

58 }

59 return;

60 }

6l

62 int main (void)

63 |

64 fraction f,g,h; // declare fractions f, g, and h
65 f.set(3,4); // initialize fraction f & g
66 g.set (7,20);

67 f.display(); // display fraction f

68 g.display();

69 h.add(f,9); // h=f+g

70 h.display () ;

71 h.reduce () ; // reduce h

72 h.display ()

73 h.multiply(£f,qg); // h=f *g

74 h.display();

75 int 1,73;

76 cout << "Enter a fraction numerator and denominator => ";
77 cin >> 1 >> j;

78 h.set (i, J):;

79 h.multiply(h,h);

80 cout << 1 << '/' << j << " squared is ";

81 h.display ()

82 return 0;

83 }

* kK kKK Sample Run * kK kKK

3/4

7/20

88/80

11/10

21/80

Enter a fraction numerator and denominator => 2 3
2/3 squared is 4/9

v Why use fraction& arguments instead of fraction?

v Should add's arguments be const fraction& instead of fraction&?

CIS27 - Programming in C++ 40

11 — Introduction to Classes

What if you tried to add a fraction to itself? fl.add(f1,f2) ?

How would you write the subtract and divide member functions?

CIS27 - Programming in C++ 41

11 — Introduction to Classes

Here’s another implementation of the reduce() function for example 3-3. It implements the
Euclidean Algorithm for determining the greatest common divisor of the fraction’s numberator
and denominator.

1 void swap(int& x, inté& y)

2 A

3 int temp;

4 temp = x;

5 X =V

6 y = temp;

7}

8

9 int gcd (int x, int vy)

10 {

11 if (x < y) swap(x,Vy);

12 int rem = x % y;

13 while (rem > 0) {

14 return gcd(y, rem); // Note recursive call to gcd()
15 }

16 return y;

17 }

18

19 wvoid fraction::reduce (void)
20 {

21 int divisor = gcd (numer,denom) ;
22 numer /= divisor;

23 denom /= divisor;

24 return;

25 }

CIS27 - Programming in C++ 42

11 — Introduction to Classes

Inline Functions

Functions, either class members or non-class member functions, may be defined as inline. An
inline function is one in which the function code replaces the function call directly. Specifying
that a function be inline is a request to the compiler that it be inline, but the

compiler may choose not to make it an inline function. This is transparent to the user. Inline
functions should be short (preferable one-liners).

Inline class member functions may be implicit, if they are defined as part of the class definition,
or explicit if they are defined outside of the class definition using the keyword, inline.

Inline functions have only internal linkage, that is, they are local to the file in which they are
defined.

Example

class xyz

{

private:

public:
void funkl (void) { cout << "Have a nice day\n"; return; }
void funk2 (void);

}i

inline void xyz::funk2 (void)

{
cout << "Ok, don't have a nice day\n";
return;

}

int main (void)
{
xyz a,b;
a.funkl () ;
b.funk2 () ;

funkl is an implicit inline function. funk2 is an explicit inline function.

CIS27 - Programming in C++ 43

11 — Introduction to Classes

Example 3-4 - The Clock class

1 // File: ex3-4.cpp - the Clock class

2

3 #include <iostream>

4 using namespace std;

5

6 class Clock

7 A

8 private:

9 int hours;

10 int minutes;

11 int seconds;

12 public:

13 void set (int h, int m, int s)

14 {hours = h; minutes = m; seconds = s; return;} // inline
15 void increment (void) ;

16 void display(int=0) const;

17 };

18

19

20 wvoid Clock::increment (void)

21 {

22 seconds++;

23 minutes += seconds/60;

24 hours += minutes/60;

25 seconds %= 60;

26 minutes %= 60;

27 hours %= 24;

28 return;

29 }

30

31

32 wvoid Clock: :display(int format) const

33 |

34 if (format) { // use format hh:mm:ss AM/PM
35 cout << (hours % 12 ? hours % 12:12) << ':!

36 << (minutes < 10 ? "0" :"") << minutes << ':'
37 << (seconds < 10 ? "0O" :"") << seconds

38 << (hours < 12 2 " AM" : " PM") << endl;

39 }

40 else { // use format hh:mm:ss (24 hour time)
41 cout << (hours < 10 2?2 "0O" :"") << hours << ':'

42 << (minutes < 10 ? "O0" :"") << minutes << ':'
43 << (seconds < 10 ? "0O" :"") << seconds << endl;
44 }

45 1}

46

47

48 int main(void)

49 {

CIS27 - Programming in C++ 44

11 — Introduction to Classes

50 Clock c;

51 c.set (23,59,55);
52 for (int 1 = 0;
53 c.increment () ;
54 c.display () ;
55 c.display (1) ;
56 cout << endl;
57 }

58 return 0;

i < 10;

i++)

{

* Kk Kk k kK Output * Kk Kk ok kK

23:59:56
11:59:56 PM

23:59:57
11:59:57 PM

23:59:58
11:59:58 PM

23:59:59
11:59:59 PM

00:00:00
12:00:00 AM

00:00:01
12:00:01 AM

00:00:02
12:00:02 AM

00:00:03
12:00:03 AM

00:00:04
12:00:04 AM

00:00:05
12:00:05 AM

CIS27 - Programming in C++

45

11 — Introduction to Classes

Example 3-5 - The Date class

1 // File: ex3-5.cpp - The Date class

2

3 #include <iostream>

4 #include <cstring>

5 #include <cstdlib>

6 using namespace std;

7

8 const unsigned DaysPerMonth[] =

9 {31,28,31,30,31,30,31,31,30,31,30,31};

10

11 class Date

12 {

13 unsigned day;

14 unsigned month;

15 unsigned year;

16 void errmsg(const char* msqg);

17 public:

18 void set (const char* mmddyy) ;

19 void increment (void) ;

20 void display(void) const;

21}

22

23 wvoild Date::set(const char* mm dd yy)

24 |

25 char* temp;

26 char copy[9];

27

28 // assume user enters date as mm/dd/yy

29 if (strlen(mm dd yy) != 8) errmsg(mm dd yy);
30

31 // use a copy of mm dd yy What is the impact to the function?
32 strcpy (copy,mm _dd yy);

33

34 // parse the date and get the month

35 temp = strtok(copy,"/"); // strtok() replaces "/" with a NULL
36 if (temp != NULL) month = atoi (temp):;

37 else errmsg(copy);

38

39 // parse the date and get the day

40 temp = strtok (NULL,"/"); // strtok() finds the next "/"
41 if (temp != NULL) day = atoi (temp);

42 else errmsg(copy)

43

44 // parse the date and get the year

45 temp = strtok (NULL,"/");

46 if (temp !'= NULL) year = atoi (temp);

47 else errmsg(copy);

48

49 // Make a Y2K correction for a 2-digit year

CIS27 - Programming in C++ 46

11 — Introduction to Classes

50 if (year < 50) year += 2000;
51 else if (year < 100) year += 1900;

52 else ; // assume the year is right

53 }

54

55 wvoid Date::increment (void)

56 |

57 // increment the day

58 day++;

59

60 // check for the end of the month

61 if (day > DaysPerMonth[month - 17) // past end of current month?
62 {

63 month ++;

64 day = 1;

65 }

66

67 // check for the end of the year

68 if (month > 12)

69 {

70 year ++;

71 month = 1;

72 }

73

74 return;

75 '}

76

77 void Date::display(void) const

78 {

79 cout << "The date is " << month << '/' << day << '/
80 << (year%100< 102"0":"") << year%1l00 << endl;
81 if (day % DaysPerMonth[month-1] == 0) cout << endl;
82 return;

83 }

84

85 wvoid Date::errmsg(const char* msqg)

86 {

87 cerr << "Invalid date format: " << msg << endl;
88 exit (EXIT_FAILURE) ;

89 }

90

91 int main(void)

92 {

93 Date d;

94 char mmddyyI[9];

95 cout << "Enter the starting date <mm/dd/yy> => ";
96 cin >> mmddyy;

97 d.set (mmddyy) ;

98 for (int 1 = 0; 1 < 375; 1i++)
99 {
100 d.display () ;

CIS27 - Programming in C++ 47

11 — Introduction to Classes

101 d.increment () ;
102 }

103 return 0;

104 }

*xxxxk% Sample Output #1 FFxxxxx

Enter the starting date <mm/dd/yy> => 4/20/09
Invalid date format: 1/20/09

*xAkxxx Sample Output #2 ***xxxx*

Enter the starting date <mm/dd/yy> => 04/20/09
The date is 4/20/09
The date is 4/21/09
The date is 4/22/09
The date is 4/23/09
The date is 4/24/09
The date is 4/25/09
The date is 4/26/09
The date is 4/27/09
The date is 4/28/09
The date is 4/29/09
The date is 4/30/09

The date is 5/1/09
The date is 5/2/09
The date is 5/3/09
The date is 5/4/09
The date is 5/5/09
The date is 5/6/09
The date is 5/7/09
The date is 5/8/09
The date is 5/9/09
The date is 5/10/09

The date is 12/29/09
The date is 12/30/09
The date is 12/31/09

The date is 1/1/10
The date is 1/2/10
The date is 1/3/10
The date is 1/4/10
The date is 1/5/10
The date is 1/6/10

The date is 4/24/10

CIS27 - Programming in C++ 48

11 — Introduction to Classes

The
The
The
The
The

v

date
date
date
date
date

What is the effect of making errmsg() private in the class?

How does strtok() work?

Is there a difference if line 40 is coded like this?

is
is
is
is
is

4/25/10
4/26/10
4/27/10
4/28/10
4/29/10

temp = strtok(NULL,"/");

No, not really, in C++ the macro NULL is defined as (integer) 0.

How would you make this program work for leap years?

How would you change display() to print the date with a two-digit month and day?

What is atoi() and how does it work? Why is it not considered “safe”?

Practice problem: Modify this program to print the date as “m/dd/yy” and to handle leap years?

CIS27 - Programming in C++

49

11 — Introduction to Classes

Example 3-6 - The quadratic (Equation) class

1 // File: ex3-6.cpp - the quadratic class

2
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 class quadratic
8
9 private:
10 float a, b, c;
11 public:
12 void set (float fl1l, float f£2, float £3)
13 {a = f1;, b = £2; ¢ = £3; return;}
14 void solve (void) const;
15 void display(void) const;
16 };
17
18 wvoid quadratic::solve (void) const
19 {
20 bool complex roots;
21 float radical stuff;
22 if (a == 0)
23 {
24 cout <<
25 "This is not a quadratic equation. It has only one root "
26 << -c/b << endl;
27 return;
28 }
29 complex roots = (radical stuff =b * b - 4 * a * ¢) < 0y
30 cout << "The roots of the equation are ";
31 if (!complex roots)
32 cout << ((-btsqgrt(radical stuff))/(2.%*a))
33 <<" and " << ((-b-sqgrt(radical stuff))/(2.*a)) << endl;
34 else
35 cout << (-b/(2.%a)) <<'+'<< sqgrt (-
radical stuff)/(2.%a)<<'1i"’
36 <<
37 " and "
38 << (-b/(2.*a)) << '-' << sgrt(-radical stuff)/(2.%a) << 'i'
39 <<endl;
40 return;
41}
42
43 void quadratic::display(void) const
44 {
45 cout << "The coefficients of the quadratic equations are: "
46 << a << ", "<KKDb<< ", and " << ¢ <<endl;
47 return;

CIS27 - Programming in C++ 50

11 — Introduction to Classes

48 '}
49

CIS27 - Programming in C++ 51

11 — Introduction to Classes

50 1int main (void)

51 |

52 quadratic equation;

53 float a,b,c;

54 while (1)

55 {

56 cout <<

57 “Enter 3 coeffients for a quadratic equation (or quit) => ";
58 if (! (cin >> a >> b >> c)) break;
59 equation.set(a,b,c);

60 equation.display();

61 equation.solve () ;

62 cout << endl;

63 }

64 return 0;

65 }

* kK kKK Sample Run * kK kKK

Enter 3 coefficients for an equation (or quit) =>1 2 1
The coefficients of the quadratic equations are: 1, 2, and 1
The roots of the equation are -1 and -1

Enter 3 coefficients for an equation (or quit) => 1 0 -1
The coefficients of the gquadratic equations are: 1, 0, and -1
The roots of the equation are 1 and -1

Enter 3 coefficients for an equation (or quit) => 1 2 3
The coefficients of the quadratic equations are: 1, 2, and 3
The roots of the equation are -1+1.414214i and -1-1.4142141

Enter 3 coefficients for an equation (or quit) => 111

The coefficients of the quadratic equations are: 1, 1, and 1
The roots of the equation are -0.5+0.8660251 and -0.5-0.8660251
Enter 3 coefficients for an equation (or quit) => 0 3 6

The coefficients of the quadratic equations are: 0, 3, and 6
This is not a quadratic equation. It has only one root -2

Enter 3 coefficients for an equation (or quit) => quit

v How does the line: if (I(cin >>a >> b >> ¢)) break; work?

CIS27 - Programming in C++ 52

11 — Introduction to Classes

Example 3-7 - The card and deck classes

This example demonstrates a container relationship between classes. This is also called
containment.

1 // File: ex3-7.cpp - card and deck classes

2

3 #include <iostream>

4 #include <cstdlib> // needed for rand() function
5 using namespace std;

6

7 const char* value name[13] = {"two","three","four","five", "six",
8 "Seven", "eight", "nine", "ten", "jack", uqueenu, "king", "sce" } ;

9

10 const char* suit name[4] = {"clubs","diamonds", "hearts", "spades"};
11

12 class card

13 {

14 private:

15 int value;

16 int suit;

17 public:

18 void assign (int);

19 int get value(void) const; // accessor function
20 int get suit(void) const; // accessor function
21 void print (void) const;

22}

23

24 wvoid card::assign(int x)

25 |

26 value = x % 13;

27 suit = x / 13;

28 return;

29 }

30

31 int card::get_value(void) const

32 {

33 return value;

34 }

35

36 int card::get suit(void) const

37 |

38 return suit;

39 1}

40

41 wvoid card::print(void) const

42 {

43 cout << (value name([value]) << " of "

44 << (suit name[suit]) << endl;

45 return;

46 '}

CIS27 - Programming in C++ 53

11 — Introduction to Classes

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

class deck

{

private:
card d[52];
int next card;
public:

void create deck(void);
voilid shuffle (void);
void deal (int=5) ;

void print (void) const;

}s

void deck::create_deck (void)

{
for (int 1 = 0; i < 52; i++) d[i].assign(i);
next card = 0;
return;

void deck: :shuffle (void)
{
int i, k;
cout << "I am shuffling the deck\n";
for (1 = 0; 1 < 52; i++)
{
k = rand() % 52;

card temp = d[i];
dfi] = d[k];
d[k] = temp;

}

return;

void deck: :print(void) const

{
cout << "\nHere's the deck:\n";
for (int i = 0; i < 52; i++) d[i].print();
return;

}

void deck::deal (int no_of cards)

{
cout <<"\nOk, I will deal you "<<no_of cards<<" cards:\n";
for (int i=0; i<no of cards; i++) d[next card++].print();
return;

CIS27 - Programming in C++ 54

11 — Introduction to Classes

96 int main(void) {

97 deck poker;

98 poker.create deck();
99 poker.print () ;

100 poker.shuffle();
101 poker.print () ;

102 poker.deal () ;

103 poker.deal (3) ;

104 return 0;

105 }

* kK Kk kK Output * kK Kk kK

Here's the deck:
two of clubs
three of clubs
four of clubs
five of clubs
six of clubs
seven of clubs
eight of clubs
nine of clubs

ace of spades
I am shuffling the deck

Here's the deck:
ten of hearts

ace of diamonds
queen of clubs
three of diamonds
four of spades
eight of spades
eight of diamonds

Ok, I will deal you 5 cards:

ten of hearts

ace of diamonds
queen of clubs
three of diamonds
four of spades

Ok, I will deal you 3 cards:

eight of spades
eight of diamonds
eight of clubs

CIS27 - Programming in C++

55

11 — Introduction to Classes

const member functions

A const member function is a class member function that may not make any changes to any of
the data members of the class. A const member function is identified by appending the keyword,
const, to both the prototype and the heading of the function definition.

The following example demonstrates const member functions. It constains several compilation
errors.

1 // File: ex3-8.cpp - const member functions

2

3 wvoid makeit6 (int& I)

4 |

5 I = 6;

6 }

.

8

9 class ABC

10 {

11 int x;

12 public:

13 void funk () ;

14 void gunk () const; // const member function
15 void hunk (inté&) ;

16 void junk (inté&) const; // const member function
17 void lunk (const inté&);

18 void munk (const inté&) const; // const member function
19 };

20

21 wvoid ABC: :funk()

22 {

23 X = 6; // ok

24 makeit6 (x) ; // ok

25 makeit6 (6) ; // error: cannot convert const int to inté&
26 }

27

28 wvoid ABC::gunk() const

29 |

30 X = 65 // error: cannot change data member in CMF
31 makeit6 (x) ; // error: cannot pass const int as inté&
32}

33

34 wvoid ABC: :hunk(int &I)

35

36 X = 6; // ok

37 makeit6 (I); // ok

38 makeit6 (x) ; // ok

39 1}

40

41 wvoid ABC::junk(int &I) const

CIS27 - Programming in C++ 56

11 — Introduction to Classes

42 |

43 x = I; // error: cannot change data member in CMF
44 makeit6 (I); // ok

45 makeit6 (x); // error: cannot pass const int as inté&
46 }

47

48

49 wvoid ABC: :lunk(const int &I)

50 {

51 x = 1I; // ok

52 makeit6 (I); // error: cannot pass const int& as ints
53 makeit6 (x); // ok

54 '}

55

56 wvoid ABC: :munk (const int &I) const

57 {

58 x = I; // error: cannot change data member in CMF
59 makeit6 (I); // error: cannot pass const inté& as ints&
60 makeit6 (xX) ; // error: cannot pass const int as inté&
61 }

62

63

64 int main()

65 {

66 ABC obiject;

67 int 1 = 3;

68 object.funk () ;

69 object.gunk () ;

70 object.hunk (i) ;

71 object.junk (i) ;

72 object.lunk (i) ;

73 object.munk (i) ;

74

75 return O;

76 }

No output - compile errors

v Make sure that you are clear on the difference between a const member function and one
with a reference to const argument. Note: in example 3-8 above, lunk() is not a const
member function. It is a member function with a reference to const argument.

CIS27 - Programming in C++

57

11 — Introduction to Classes

mutable

You haven’t heard the entire truth about const member functions. The definition stated earlier
was, “A const member function is a class member function that may not make any changes to
any of the data members of the class”. Actually, there is an exception to this. The keyword,
mutable, allows the user to supersede the const intension. A class member that is defined using
the storage specifier, mutable, may be changed in a const member function. Here is example 3-8
again with a mutable class member:

1 // File: ex3-8m.cpp - const member function with a mutable member
2

3 wvoid makeit6(inté& I)

4 |

5 I = 6;

6 }

7

8

9 class ABC

10 {

11 mutable int x;

12 public:

13 void funk ()

14 void gunk() const; // const member function
15 void hunk (inté&) ;

16 void junk (int&) const; // const member function
17 void lunk (const inté&):;

18 void munk (const inté&) const; // const member function
19 };

20

21 +wvoid ABC: :funk()

22 {

23 X = 6; // ok

24 makeit6 (x); // ok

25 makeit6 (6); // error: cannot convert const int to ints
26 }

27

28 woid ABC::gunk() const

29 |

30 X = 6; // ok

31 makeit6 (x) ; // ok

32 }

33

34 wvoid ABRC: :hunk(int &I)

35 {

36 x = 6; // ok

37 makeit6 (I); // ok

38 makeit6 (x) ; // ok

39 }

40

41 wvoid ABC::junk(int &I) const

CIS27 - Programming in C++ 58

11 — Introduction to Classes

42 |

43 x = 1; // ok

44 makeit6 (I); // ok

45 makeit6 (x); // ok

46 }

47

48

49 wvoid ABC: :lunk(const int &I)

50 {

51 x = 1I; // ok

52 makeit6 (I); // error: cannot pass const int& as inté&
53 makeit6 (x); // ok

54 '}

55

56 wvoid ABC: :munk (const int &I) const
57 {

58 x = I; // ok

59 makeit6 (I); // error: cannot pass const inté& as inté&
60 makeit6 (x); // ok

61 }

62

63

64 int main()

65 |

66 ABC obiject;

67 int 1 = 3;

68 object. funk
69 object.gunk

()
()
70 object.hunk (i) ;
71 object.junk (i) ;
72 object.lunk (i) ;
73 object.munk (i) ;
74
75 return 0;
76 }
No output - compile errors

mutable should be used in a situation where you want a member function to only be able to
change a few of the class members, not all of them.

CIS27 - Programming in C++ 59

11 — Introduction to Classes

Classes Containing Enumerated Types

Example 3-9 - Enums and classes

1 // File: ex3-9.cpp - enums and classes
2

3 #include <iostream>

4 using namespace std;

5

6 enum Size {small, medium, large}; // global enum
7

8 class Thing

9 {

10 public:

11 enum Color {red, white, blue};

12 enum {FALSE, TRUE }; // anonymous enum
13 void setBigness (Size=small);

14 void setHue (Color=red);

15 Size getBigness () const;

16 Color getHue () const;

17 int amIBlue () const

18 { if (hue == blue) return TRUE; else return FALSE; }
19 private:

20 Size bigness;

21 Color hue;

22 };

23

24 void Thing::setBigness (Size s)

25 |

26 bigness = s;

27 }

28

29 wvoid Thing::setHue (Color c)

30 |

31 hue = c;

32 }

33

34 Size Thing::getBigness () const {

35 return bigness;

36}

37

38 Thing::Color Thing::getHue () const {
39 return hue;

40 }

41

42

43 Thing::Color nonMember (const Thing&); // function prototype
44

45 int main ()

46 {

47 Size S = large;

CIS27 - Programming in C++ 60

11 — Introduction to Classes

48 Thing::Color C = Thing::white;

49

50 Thing bigRedThing;

51 bigRedThing.setBigness (S) ;

52 bigRedThing.setBigness (medium) ;

53 bigRedThing.setHue () ;

54 cout << "I am"

55 << (bigRedThing.amIBlue() 2 "™ " : "™ not ")
56 << "blue\n";

57

58 Thing littleBlueThing;

59 littleBlueThing.setBigness() ;

60 // 1littleBlueThing.setHue (blue);

61 littleBlueThing.setHue (Thing: :blue);

62 cout << "I am"

63 << (littleBlueThing.amIBlue() 2 " " : " not ")
64 << "blue\n";

65 littleBlueThing.setHue (C) ;

66 cout << "I am"

67 << (littleBlueThing.amIBlue() 2 "™ " : "™ not ™)
68 << "blue\n";

69

70 nonMember (bigRedThing) ;

71}

72

73 Thing::Color nonMember (const Thingé& T)

74

75 return T.getHue()

76}

kKK kKK Output XKk kKK

I am not blue
I am blue
I am not blue

Note: An enumerated type defined within a class is subject to access specifiers, just like data
members or member functions. In other words, if the color type in the thing class of this
example is specified as private, then that type is not visible except to class member functions.

CIS27 - Programming in C++ 61

11 — Introduction to Classes

Nested Classes

This example illustrates nested classes. Note the use of the scope resolution operator in the
member function definitions. This example is logically the same as example 3-7.

Example 3-10 - Nested Classes

1 // File: ex3-10.cpp - the card and deck example with nested classes
2

3 #include <iostream>

4 4#include <stdlib>

5 using namespace std;

6

7 const char* value name[13] = {"two","three","four","five", "six",
8 "seven","eight", "nine", "ten", "jack", "queen", "king", "ace"};
9 const char* suit name[4] =

10 {"clubs","diamonds", "hearts", "spades"};
11

12

13 class deck

14

15 public: // Why is this public?
16 class card

17 {

18 private:

19 int value;

20 int suit;

21 public:

22 void assign (int);

23 int get value(void) const;

24 int get suit(void) const;

25 void print (void) const;

26 b

27

28 private:

29 card d[52];

30 int next card;

31 public:

32 void create deck(void);

33 void shuffle (void);

34 void deal (int=5);

35 void print (void) const;

36 };

37

38

39 int deck::card::get value(void) const

40 |

41 return value;

42 1}

43

44 int deck::card::get suit(void) const

CIS27 - Programming in C++ 62

11 — Introduction to Classes

45 |

46 return suit;

47)}

48

49 void deck: :card::assign(int x)

50 {

51 value = x % 13;

52 suit = x / 13;

53 }

54

55 wvoid deck::card: :print(void) const

56 {

57 cout << (value name[value]) << " of "
58 << (suit name[suit]) << endl;

59 return;

60 }

61

62 void deck::create_deck(void)

63 {

64 for (int i = 0; 1 < 52; i++) d[i].assign(i);
65 next card = 0;

66 }

67

68 wvoid deck: :shuffle(void)

69 {

70 int 1, k;

71 card temp;

72 cout << "I am shuffling the deck\n";
73 for (i = 0; 1 < 52; i++)

74 {

75 k = rand() % 52;

76 temp = d[i];

77 d[i] = d[k];

78 d(k] = temp;

79 }

80 }

81

82 void deck: :print(void) const

83 {

84 cout << "\nHere's the deck:\n";

85 for (int 1 = 0; i < 52; i++) d[i].print();
86 }

87

88 void deck::deal(int no_of cards)

89 {

90 cout <<"\nOk, I will deal you "<<no_of cards<<" cards:\n";
91 for (int i=0;i<no_of cards; i++) d[next card++].print();
92 return;

93 }

CIS27 - Programming in C++ 63

11 — Introduction to Classes

94 int main (void)

95 {

96 // card C;

97 deck::card C;

98 C.assign (17);

99 C.print();

100

101 deck poker;

102 poker.create deck();
103 poker.print () ;
104 poker.shuffle();
105 poker.print () ;
106 poker.deal () ;
107 poker.deal (3);
108 return 0;

109 }

// Why is this commented out?
// Instatiate a card object

// prints six of diamonds

*HFFxxxx Qutput same as Example 3-7 *****xx

Note: A nested class, like the card class of this example, is subject to access specifiers, just like
data members or member functions. In other words, if the card class within the deck class of this
example is specified as private, then the card type is not visible except to deck class member

functions.

CIS27 - Programming in C++

64

11 — Introduction to Classes

Multi-File C++ Programs

It is common practice in larger C++ programs to separate the application into multiple files. The
files typically consist of one or more header files, function definition files, and a file to hold
main(). The header files generally contain class definitions, constants, enumerated types,
structures, typedefs, and inline function definitions. Header files have the same name as the
class or a name related to the application and have the extension .h (.hpp on some compilers).
Class member function definitions are contained in another file(s). The filename is often the
same name as the class name and extension .cpp (or whatever the requirement for your
compiler). This file(s) should "include” the header file(s) and may be compiled separately. The
file containing main() will usually have the name of the application and the usual C++ extension.
main() will need to include the header file(s) and after compilation will link to the compiled class
member definition file(s). This process is managed for you in many of the PC and Mac
compilers with projects.

This example is logically the same as Example 3-7.

Example 3-11 - A Multi-file program

1 // File: ex3 1llc.h - card class definition
2

3 #ifndef EX3 11C H

4 #define EX3 11C H

5

6 class card

7

8 private:

9 int value;

10 int suit;

11 public:

12 void assign (int);

13 int get value(void) const;
14 int get suit(void) const;
15 void print (void) const;

16 };

17

18 #endif

Note: some compilers do not support header files with a hyphen in the file name.

CIS27 - Programming in C++ 65

11 — Introduction to Classes

1 // File: ex3 _11d.h - deck class definition
2 #ifndef EX3 11D H

3 #define EX3 11D H

4 4#include "ex3 1lc.h"

5

6 class deck

7 A

8 private:

9 card d[52];

10 int next card;

11 public:

12 void create deck(void);

13 volid shuffle (void);

14 void deal (int=5) ;

15 void print (void) const;

16 };

17 #endif

1 // File: ex3-1llc.cpp card class member function definitions
2

3 #include <iostream>

4 using namespace std;

5

6 #include "ex3 1llc.h"

7

8 const char* value name[1l3] =

9 {"two", "three", "four","five", "six",

10 "seven","eight", "nine", "ten", "jack", "queen", "king", "ace"};
11 const char* suit name[4] =

12 {"clubs", "diamonds", "hearts", "spades"};
13

14 card::get value(void) const ({

15 return value;

16 }

17

18 int card::get_suit(void) const ({

19 return suit;

20 }

21

22 wvoid card::assign(int x) {

23 value = x % 13;

24 suit = x / 13;

25 return;

26 }

27

28 wvoid card: :print(void) const {

29 cout << (value name[value]) << " of "
30 << (suit name[suit]) << endl;

31 return;

32}

CIS27 - Programming in C++ 66

11 — Introduction to Classes

1 // File: ex3-11ld.cpp - deck class member function definitions
2

3 #include <iostream>

4 4#include <cstdlib> // needed for rand() function
5 using namespace std;

6

7 #include "ex3 11d.h"

8

9 void deck::create_deck(void) {

10 for (int i = 0; i < 52; i++) d[i].assign(i);
11 next card = 0;

12 }

13

14 +wvoid deck::shuffle(void) {

15 int i, k;

16 card temp;

17 cout << "I am shuffling the deck\n";

18 for (i = 0; 1 < 52; i++) {

19 k = rand() % 52;

20 temp = d[i];

21 d[i] = d[k];

22 d(k] = temp;

23 }

24 }

25

26 wvoid deck: :print(void) const {

27 cout << "\nHere's the deck:\n";

28 for (int i = 0; i < 52; i++) d[i].print();
29 }

30 void deck::deal(int no_of cards) {

31 cout <<"\nOk, I will deal you "<<no of cards<<" cards:\n";
32 for (int i1 = 0;i<no of cards; i++) d[next card++].print();
33}

1 // File: ex3-1ll.cpp - main()

2

3 #include "ex3 11d.h"

4

5 int main (void) {

6 deck poker;

7 poker.create deck();

8 poker.print () ;

9 poker.shuffle();

10 poker.print () ;

11 poker.deal () ;

12 poker.deal (3);

13 return 0;

14 }

The output is the same as examples 3-7.

CIS27 - Programming in C++ 67

11 — Introduction to Classes

Command-line Compilation

Microsoft Visual C++ 2008 compiler

Before you can perform a command-line compile, you must run vcvars32.bat. This program
and the cl.exe for the command-line compile are found in the directory: \Program Files\Microsoft
Visual Studio 9.0\VC\bin

C:\deanza\cis27\examples>vcvars32

C:\deanza\cis27\examples>"c:\Program Files\Microsoft Visual Studio
9.0\Common7\Tools\vsvars32.bat"
Setting environment for using Microsoft Visual Studio 2008 x86 tools.

C:\deanza\cis27\examples>cl ex3-11l.cpp ex3-llc.cpp ex3-11ld.cpp /EHsc
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for
80x86

Copyright (C) Microsoft Corporation. All rights reserved.

ex3-11.cpp

ex3-1lc.cpp

ex3-11d.cpp

Generating Code...

Microsoft (R) Incremental Linker Version 9.00.21022.08
Copyright (C) Microsoft Corporation. All rights reserved.

/out:ex3-11.exe
ex3-11.0bj
ex3-11c.obj
ex3-11d.obj

GNU compiler

g++ ex3-11l.cpp ex3-llc.cpp ex3-1ld.cpp -Wall

CIS27 - Programming in C++ 68

IV — Constructors and Destructors

Constructors and Destructors

Constructors are special class member functions that are used to create class objects. They
execute automatically when an instance of a class is created. Constructors are used to initialize
class data members. They are also used to allocate memory for a class. A constructor’s name is
the same as the class name.

Destructors are functions that also execute automatically when the object goes out of scope
(existence). Destructors, too, have a special name. It is the class name preceded by a ~ (tilde).
Destructors are used to release dynamically allocated memory and to perform other "cleanup™
activities.

Example

class xyz

{

private:
public:
xyz (), // constructor prototype
~xyz(); // destructor prototype
bi
xyz: :xyz() // constructor definition
{
}
Xyz::~xyz() // destructor definition

int main (void)
{

xyz thing; // the construction is called now

return 0; // the destructor is called now

CIS27 - Programming in C++ 69

IV — Constructors and Destructors

Constructor/Destructor Notes

Constructors and destructors are usually placed in the public part of class definition.
Both the constructor and the destructor have no return type, nor a return statement.

Destructors cannot have arguments. Constructors can. They can have several arguments,
including default arguments.

Constructors are not usually called explicitly. They are called automatically. Destructors are
not usually called explicitly.

A class may have several constructors. If a class has multiple constructors, the argument list,
including default arguments, must be unique. (see box below)

Ctor and Dtor are abbreviations for constructor and destructor.
Every object must have a constructor. If you do not provide one, the compiler will create one
for you. This constructor is a default constructor. Default constructor also refers to a

constructor without arguments.

Destructors are automatically called when a class object is deleted.

Overloaded Functions

Overloaded functions are functions with the same name, but different arguments. The following
function prototypes illustrate overloaded functions:

int

int

int

int

int

voi

funk () ;

funk (int x);

funk (double d);
funk (char*, int);
funk (xyz&, abcé&);

d funk(int a, int b, int c = 1);

CIS27 - Programming in C++ 70

IV — Constructors and Destructors

Example 4-1 - The Circle Class with a constructor and destructor

1 // File: ex4-1l.cpp - the circle class with ctor and dtor
2

3 #include <iostream>

4 using namespace std;

5

6 class circle

7 A

8 private:

9 double radius;

10 public:

11 circle (double) ;

12 ~circle();

13 double area(void) const;

14 void display (void) const;

15 };

16

17 circle::circle(double r) // constructor
18 {

19 radius = r;

20 }

21

22 circle::~circle() // destructor
23 {

24 cout << "The destructor is called now\n";

25 '}

26

27 double circle::area(void) const

28 {

29 return 3.14 * radius * radius;

30 }

31

32 wvoid circle::display(void) const

33 |

34 cout << radius << endl;

35 return;

36 }

37

38 int main(void)

39 {

40 circle c(5.); // an instance (object) of circle class
41 cout << "The area of circle ¢ is " << c.area() << endl;
42 cout << "Circle c¢ has radius ";

43 c.display();

44 return 0;

45 1}

* kK kKK Output * kK kKK

The area of circle ¢ is 78.5
Circle ¢ has radius 5
The destructor is called now

CIS27 - Programming in C++ 71

IV — Constructors and Destructors

Example 4-2 - Constructor/Destructor Execution with respect to Scope

O ~J o O W DN

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// File: ex4-2.cpp
#include <iostream>

using namespace std;

class test

{

char ch;

public:
test (char c); // constructor
~test () ; // destructor

}i

test::test(char c)
{
ch = c;
cout << "*** constructor called for object " << ch <<endl;

}

test::~test()
{

cout << "destructor called for object " << ch << endl;

}

int main(void)
{
test a(‘a’);
{
test b(‘b’);
}
{
test c(‘c’);
{
test d(‘d’);
}
}

return O;

* kK kKK Output * kK kKK

*** constructor called for object a
*** constructor called for object b
destructor called for object b
*** constructor called for object c
*** constructor called for object d
destructor called for object d
destructor called for object c
destructor called for object a

CIS27 - Programming in C++ 72

IV — Constructors and Destructors

Example 4-3 - Constructor and Destructor

1 // File: ex4-3.cpp - the person class with ctor & dtor
2

3 #include <iostream>

4 #include <cstring>

5 #include <cstdlib>

6 using namespace std;

7

8 class person

9 |

10 private:

11 char* name;

12 public:

13 person (const char *); // constructor
14 ~person () ; // destructor
15 void print (void) const; // display person's name
16 };

17

18 person: :person(const char* n)
19 |

20 name = new char[strlen(n)+1];
21 strcpy (name, n) ;

22}

23

24 person: :~person (void)

25 |

26 delete[] name;

27 '}

28

29 wvoid person: :print(void) const
30 |

31 cout << name << endl;

32 return;

33}

34

35 int main(void)

36 |

37 person mary ("Mary") ;

38 person Jjoe ("Joe");

39 mary.print () ;

40 joe.print();

41 return 0;

42}

* Kk Kk kK k Output * Kk Kk kK k
Mary
Joe

CIS27 - Programming in C++ 73

IV — Constructors and Destructors

Example 4-4 - The card and deck Classes

This example illustrates a containment relationship between classes.

1 // File: ex4-4.cpp

2

3 #include <iostream>

4 #include <cstdlib> // needed for rand() function
5 using namespace std;

6

7 const char* value name[l13] = {"two","three","four","five", "six",
8 "seven","eight", "nine", "ten", "jack", "queen", "king", "ace"};
9

10 const char* suit name[4] = {"clubs","diamonds", "hearts", "spades"};
11

12 class card

13 {

14 private:

15 int value;

16 int suit;

17 public:

18 card () {}

19 card (int) ;

20 int get value(void) { return value;} // accessor function
21 int get suit(void) { return suit;} // accessor function
22 void print (void);

23 };

24

25 card::card(int x) // constructor

26 |

27 value = x % 13;

28 suit = x / 13;

29 }

30

31 wvoid card: :print (void)

32 {

33 cout << (value name[value]) << " of "

34 << (suit name[suit]) << endl;

35 return;

36 }

37

38

39 class deck

40 |

41 private:

42 card d[52];

43 int next card;

44 public:

45 deck (void) ;

46 void shuffle (void);

47 void deal (int=5) ;

48 void print (void);

CIS27 - Programming in C++ 74

IV — Constructors and Destructors

card (i) ;

no of cards << " cards:\n";

49}y

50

51 deck: :deck(void)

52 {

53 for (int 1 = 0; 1 < 52; 1i++) d[1i] =
54 next card = 0;

55 }

56

57

58 wvoid deck: :shuffle(void)

59 {

60 int i, k;

61 card temp;

62 cout << "I am shuffling the deck\n";
63 for (i = 0; 1 < 52; i++)

64 {

65 k = rand() % 52;

66 temp = d[i];

67 dli] dlk];

68 dlk] = temp;

69 }

70 return;

71 }

72

73 woid deck: :print (void)

74 {

75 for (int 1 = 0; 1 < 52; 1i++)
76 dli] .print();

77 return;

78 }

79

80 void deck::deal(int no_of cards)
81 {

82 cout << "\nOk, I will deal you " <<
83 for (int 1 = 0; 1 < no_of cards; i++)
84 d[next card++].print();

85 return;

86 }

87

88

89 int main (void)

90 {

91 deck poker;

92 poker.shuffle();

93 poker.print () ;

94 poker.deal () ;

95 poker.deal (3);

96 return 0;

97 }

Output similar to Example 3-7

CIS27 - Programming in C++

75

IV — Constructors and Destructors

v How does line 53 work? What does d[i] = card(i) mean?

v How many constructor calls result from the deck instantiation on line 91?

CIS27 - Programming in C++ 76

IV — Constructors and Destructors

Example 4-5 — The card and deck Classes Again

This example illustrations a more sophisticated approach to the card and deck classes and more
interesting constructors and a destructor.

1 // File: ex4-5.cpp

2

3 #include <iostream>

4 #include <cstdlib> // needed for rand() function

5 using namespace std;

6

7 const char* value name[13] = {"two","three","four","five", "six",
8 "Seven", "eight", "nine", "ten", "jack", uqueenu, "king", "sce" } ;
9

10 const char* suit name[4] = {"clubs","diamonds", "hearts", "spades"};
11

12 class card

13 {

14 private:

15 int wvalue;

16 int suit;

17 public:

18 card (int=0) ;

19 int get value(void) { return value;} // accessor function
20 int get suit(void) { return suit;} // accessor function
21 void print (void);

22 };

23

24 card::card(int x)

25 |

26 X = abs (x)%52; // make sure x is between 0 and 51
27 value = x % 13;

28 suit = x / 13;

29 '}

30

31 wvoid card: :print(void)

32 {

33 cout << (value name[value]) << " of "

34 << (suit name[suit]) << endl;

35 return;

36 }

37

38

39 class deck

40 |

41 private:

42 card** d;

43 int size;

44 int next card;

45 public:

46 deck (int s = 52);

CIS27 - Programming in C++ 77

IV — Constructors and Destructors

47 ~deck (void) ;

48 void shuffle(void);

49 voilid deal (int=5);

50 void print (void);

51 };

52

53 deck: :deck(int s)

54 {

55 size = s;

56 d = new card*[size];

57 for (int i = 0; 1 < size; i++) d[i] = new card(i);
58 next card = 0;

59 }

60

61 deck: :~deck (void)

62 {

63 for (int 1 = 0; 1 < size; i++) delete d[i];
64 delete [] d;

65 cout << "The deck is gone" << endl;
66 }

67

68 wvoid deck: :shuffle(void)

69 {

70 int 1, k;

71 card* temp;

72 cout << "I am shuffling the deck\n";
73 for (i = 0; 1 < size; 1i++)

74 {

75 k = rand() % size;

76 temp = d[i];

77 d(i] = d[k];

78 dlk] = temp;

79 }

80 return;

81 }

82

83 void deck: :print(void)

84 {

85 for (int 1 = 0; 1 < size; i++)

86 d[i]->print () ; // same as (*d[i]) .print ()
87 return;

88 }

89

90 void deck::deal(int no_of_ cards)

91 {

92 cout << "\nOk, I will deal you " << no of cards << " cards:\n";
93 for (int 1 = 0; 1 < no_of cards; i++)
94 d[next card++]->print();

95 return;

96 }

97

CIS27 - Programming in C++ 78

IV — Constructors and Destructors

99 int main (void)

100 {

101 deck poker;

102 poker.shuffle();
103 poker.print () ;
104 poker.deal () ;
105 poker.deal (3);
106 return 0;

107 }

Output similar to Example 3-7

v In line 57, how does the expression d[i] = new card(i) work ?

v What is better about this approach over the last example?

CIS27 - Programming in C++

79

IV — Constructors and Destructors

Example 4-6 - When is a Constructor called?

File: ex4-6.cpp

1

2

3 #include <iostream>
4 using namespace std;
5

6

7

8

class Z {
public:
Z (void) { cout << "Z's constructor is called now\n";}

9 17

10

11 int main(void) {

12 cout << "\nl. Is the constructor called?\n";

13 7 z; // declare a 7Z
14 cout << "\n2. Is the constructor called?\n";

15 Z bunch[3]; // declare a bunch of Zs
16 cout << "\n3. Is the constructor called?\n";

17 Z* ptrZz; // declare a pointer to Z
18 cout << "\n4. Is the constructor called?\n";

19 Z* a new prtZ = new Z; // allocate memory for a Z
20 cout << "\nb5. Is the constructor called?\n";

21 Z* threeZ = new Z[3]; // allocate memory for 3 Zs
22 cout << "\n6. Is the constructor called?\n";

23 Z** ptr ptr z; // declare a ptr to ptr to a 2
24 cout << "\n7. Is the constructor called?\n";

25 Z** ptr ptr newZ = new Z*; // alloc mem for a ptr to a 2
26 return O;

27 }

kK kKKK Output kX kK kKK

1. Is the constructor called?
Z's constructor is called now

2. Is the constructor called?
Z's constructor is called now
Z's constructor is called now
Z's constructor is called now

3. Is the constructor called?

4. Is the constructor called?
Z's constructor is called now

5. Is the constructor called?
Z's constructor is called now
Z's constructor is called now
Z's constructor is called now

6. Is the constructor called?

7. Is the constructor called?

CIS27 - Programming in C++ 80

IV — Constructors and Destructors

Example 4-7 - When is a Constructor called?

1 // File: ex4-7.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 class 2

7 A

8 public:

9 Z (void) // constructor
10 {

11 cout << "Z's constructor is called now" << endl;
12 }

13 ~7 () // destructor
14

15 cout << "Z's destructor is called now" << endl;
16 }

17 };

18

19 Z funkl(Z hey)

20 {

21 cout << "This is funkl\n";

22 return hey;

23}

24

25 int main(void)

26 |

27 Z temp;

28 funkl (temp) ;

29 return 0;

30 }

kKK kKK Output kK kKKK

Z's constructor is called now
This is funkl

Z's destructor is called now
Z's destructor is called now
Z's destructor is called now

v What is going on?

CIS27 - Programming in C++ 81

IV — Constructors and Destructors

v Example 4-8 - When is a Constructor called?
1 // File: ex4-8.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 class Z

7 A

8 public:

9 Z (void)

10 {

11 cout << "Z's default constructor is called now\n";
12 }

13 Z (const Z& zed)

14 {

15 cout << "Z's copy constructor is called now" << endl;
16 }

17 ~7Z ()

18 {

19 cout << "Z's destructor is called now" << endl;
20 }

21 };

22

23 Z funkl(Z hey)

24 {

25 cout << "This is funkl\n";

26 return hey;

27 }

28

29 int main(void)

30 |

31 Z temp;

32 funkl (temp) ;

33 return 0;

34 }

* kK kKK Output * kK kKK

Z's default constructor is called now
Z's copy constructor is called now
This is funkl

Z's copy constructor is called now
destructor is called now
destructor is called now

Z'
Z'
Z' destructor is called now

0 n un

v What happened?

CIS27 - Programming in C++ 82

IV — Constructors and Destructors

Example 4-9 - The Person and People Classes

1 // File: ex4-9.cpp

2

3 #include <iostream>

4 #include <cstring>

5 #include <cstdlib>

6 using namespace std;

7

8 class Person

9 {

10 private:

11 char* name;

12 public:

13 Person (const char *); // constructor
14 ~Person () ;

15 void print (void) const; // display Person's name
16 };

17

18

19 Person: :Person(const char* n)

20 {

21 name = new char[strlen(n)+1];

22 if (name == 0)

23 {

24 cerr << "Insufficent memory to store " << n << endl;
25 exit (1) ;

26 }

27 strcpy (name, n) ;

28 }

29

30

31 Person: :~Person()

32 {

33 cout << "Person destructor call for " << name << endl;
34 delete [] name;

35 }

36

37

38 wvoid Person: :print(void) const

39 {

40 cout << name << endl;

41 return;

42 1}

43

44

45 class People

46 |

47 private:

48 Person** array;

49 int Person_ index; // Person index

50 int Max People; // number of People in array

CIS27 - Programming in C++ 83

IV — Constructors and Destructors

51 public:

52 People (int) ;

53 ~People () ;

54 void addPerson (void) ;

55 void print(void) const;

56 };

57

58

59 People: :People(int nope)

60 {

61 Max People = nope;

62 array = new Person*[Max People];

63 Person index = 0;

64 }

65

66

67 People: :~People ()

68 {

69 cout << "\nPeople destructor called" << endl;
70 for (int 1 = 0; 1 < Max People; i++)
71 {

72 cout << "deleting pointer to Person[" << 1 << "]\n";
73 delete arrayl[il;

74 }

75 delete [] array;

76}

77

78

79 wvoid People: :addPerson (void)

80 {

81 char temp[20];

82 cout<<"Enter the Persons name => ";
83 cin >> temp;

84 array[Person index++] = new Person (temp);
85 return;

86 }

87

88

89 void People: :print(void) const

90 {

91 cout << "\nHere's the People:\n";

92 for (int 1 = 0; i1 < Person index; i++) arrayl[i]->print();
93 return;

94 }

95

96

97 int main (void)

98 {

99 cout << "How many friends do you have? ";
100 int no friends;

101 cin >> no friends;

102 People friends(no friends);

CIS27 - Programming in C++ 84

IV — Constructors and Destructors

103 for (int 1 = 0; 1 < no friends; i++) friends.addPerson();
104 friends.print();

105 return 0;

106 }

* Kk Kk kK Sample Run * Kk k ok kK

How many friends do you have? 5
Enter the persons name => Henry
Enter the persons name => Hubert
Enter the persons name => Hank
Enter the persons name => Hilbert
Enter the persons name => Hellbert

Here's the people:
Henry

Hubert

Hank

Hilbert

Hellbert

People destructor called

deleting pointer to person[0]
Person destructor call for Henry
deleting pointer to person[l]
Person destructor call for Hubert
deleting pointer to person[2]
Person destructor call for Hank
deleting pointer to person[3]
Person destructor call for Hilbert
deleting pointer to person[4]
Person destructor call for Hellbert

v What does a People object look like?

v What caused each destructor call to Person?

v No copy constructors were provided for either the Person class or the People class. Is
that a good idea? How would you write them?

CIS27 - Programming in C++ 85

IV — Constructors and Destructors

The Default Constructor

A default constructor is the constructor that is executed when no arguments are provided in the
declaration. There are three possible situations for this:

1. If you do not provide any constructor for a class, the compiler-provided one is considered the
default constructor. It, of course, does not do anything other than allocating memory for the
class object.

This looks like:

class x

{

. // no constructors defined for the class
}s

2. If you provide a constructor without any arguments (void), then that is the class default
constructor.

This looks like:
class x
{
h x(); // or x(void);

}i

3. If you provide a constructor with all default arguments, then, that, too, may be considered the
default constructor. Warning: you may not have a class with both a void-argument
constructor and one with all default arguments.

This looks like:

class x
{
x (int x=5); // Note: the only argument is a default argument
}i
or maybe like this:

class x
{

% (double d = 0.0, unsigned short s=0); // Two default
arguments

}i

CIS27 - Programming in C++ 86

IV — Constructors and Destructors

Instantiation of an Object Using the Default Constructor

Objects are declared using the default constructor without parentheses, not even empty
parentheses.

For example, to declare (instantiate an object) using any one of the x classes from the previous
page, you would write it as:

x object;

or

new Xy,
or

new x();
not

x object () ;

v Why can’t you declare a class object with parentheses using the default constructor?
Answer:

Suppose you write a function like this:

void funk ()

{

h x object () ;

-

The problem is that the statement, x object();, can take on two meanings. It looks just like a

function prototype (a function called object with a void argument and an x return) and now you
want to use it to instantiate an x object? I don’t think so. You compiler refuses to be confused.

CIS27 - Programming in C++ 87

IV — Constructors and Destructors

Overloading Constructors and Copy Constructors

It is common practice to overload constructors, providing them with different argument types for
different situations. The default constructor is one that has no arguments. A copy constructor is
one that copies an existing instance of a class. It is common practice to use reference to a const
class object as the argument of a copy constructor.

Example 4-10 - The text class

1 File: ex4-10.cpp

2

3 #include <iostream>

4 #include <cstring>

5 using namespace std;

6

7 class text

8

9 private:

10 char* s;

11 int length;

12 public:

13 text (void) ; // default constructor
14 text (const char *);

15 text (const texté&); // copy constructor
16 text (int) ;

17 text (char) ;

18 ~text () { delete [] s; } // inline destructor
19 void print (void) const;

20 };

21

22 text::text(void) {

23 s = new char([1l];

24 s[0] = '"\0"';

25 length = 0;

26 }

27

28 text::text(const char* str)

29 |

30 s = new char[strlen(str) + 1];
31 length = strlen(str);

32 strcpy (s, str);

33}

34

35 text::text(const text& str)

36 {

37 length = str.length;

38 s = new charl[length + 1];

39 strcpy(s,str.s);

40 1}

CIS27 - Programming in C++ 88

IV — Constructors and Destructors

41 text::text(int len)

42 |

43 length = len;

44 s = new char[length + 1];
45 1}

46

47 text::text (char ch)

48 {

49 length = 1;

50 s = new char[2];

51 s[0] = ch;

52 s[1] = '"\0"';

53 }

54

55 wvoid text::print(void) const
56 {

57 cout << s << endl;

58 }

59

60 int main (void)

61 {

62 text a("Have a nice day");
63 a.print () ;

64

65 text b (a);

66 b.print();

67

68 text c; // Note: do not use text c();
69 c.print();

70

71 text d(15);

72 d.print();

73

74 text e('x");

75 e.print();

76

77 return O;

78 }

* Kk Kk Kk kx * Kk Kk Kk kx

Output

Have a nice day
Have a nice day

<& What’s this?

CIS27 - Programming in C++

89

IV — Constructors and Destructors

More constructor questions and answers

Should you write a Constructor?
Yes

What if you don’t write a constructor?
Your compiler will write one for you

Why won’t this compile?

class xyz {
int x;
public:
xyz(int x) { x = x; }

};

int main() {
xyz Object;
return 0;

o J oy U Wb

e

10 '}

The xyz declaration in main() would use a default constructor. If you write any
constructor in your class, your compiler will not write a default constructor for you.

Why should you write a copy constructor?
It is often desirable to create an object by copying an existing object. And even if you don't
do that, anytime an object is passed or returned by value, the copy constructor is used.

What happens if you don't write a copy constructor?
If you don't your compiler will write one for you when needed. It may not do what you
want.

What's the general advice about writing constructors?
Write a default constructor, a copy constructor and any others you may need. Even if you
don't need the default or copy constructor now, you may need it later.

What if a class contains another class object, will the contained object's constructor be called
when a container class object is declared?
Yes

CIS27 - Programming in C++ 90

IV — Constructors and Destructors

Constructor Initialization List

C++ has a special syntax used to initialize class data members in the constructor function.
Initializing values may be placed in a comma-separated list after the constructor argument list
and before the function body. A colon precedes the list of initializers. For example:

Example 4-11 - Constructor with Initialization List

O J o O b W DN

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// File: ex4-11.cpp

#include <iostream>
using namespace std;

class xyz

{

private:
int a, b, c;

public:
xyz() : a(l), b(2), c(3) { } // default constructor
xyz (int, const xyzé&); // constructor #2 prototype

void print (void) { cout << a << b << ¢ << endl; }
}i

Xyz::xyz(int aa, const xyzé& hey) : a(aa), b(5), c(hey.c) {}

int main (void)

{ XYZ YOj; // uses default constructor
xyz yoyo (2,yo); // uses constructor #2
yo.print () ;

yoyo.print () ;

return O;

kKK kKK Output XKk kKK

123
253

CIS27 - Programming in C++ 91

IV — Constructors and Destructors

There are three situations where constructor initialization lists are required:
e when a class contains a const data member
e when a class contains a reference data member

e when you wish to make reference to a specific, not-default constructor (this is especially
useful with inheritance and containment)

The following example show initialization of a class with const and reference data members:

Example

class xyz
{
private:
int a;
const int b;
int& c;
public:
xyz (int, int&) ;

}i

xyz::xyz(int i, inté& j) : b(i+l), c(3)

int main (void)
{
int z = 3,
g = 5;
xyz hey(z,q);

v After hey is declared, what are the values assigned to hey's a, b, and c?

CIS27 - Programming in C++ 92

IV — Constructors and Destructors

Example 4-11a — Another example using constructor initializers

1 #include <string>

2

3 class tail

4

5 unsigned short length;

6 public:

7 tail (unsigned short len = 6);
8

}s

NeJ

10 tail::tail (unsigned short len)
11 : length(len)

12 {}

13

14

15 class dog

16 |

17 tail tail ;
18 std::string name ;
19 public:

20 dog(std::string name);
21 };

22

23 dog::dog(std::string name)
24 : tail (tail()), name_(name)
25 {}

26

27 int main ()

28 {

29 dog beagle ("Emily");
30 return 0;

31}

Notes:

Line 7

Line 10

Line 11

Line 18

Line 20

Line 24 — What if you do not include tail_(tail(), here?

Line 29

CIS27 - Programming in C++ 93

IV — Constructors and Destructors

The following example illustrates some initialization lists. This example also shows how
multiple constructors may be very applicable to a real-world situation. If you are not into
algebra and geometry, skip the arithmetic.

Example 4-12 - The Point and Line classes.

1 // File: ex4-12p.h - Point class header file

i #ifndef POINT H

4 #define POINT H

2 inline double square (double d) { return d*d; }
; class Line; // forward declaration

io class Point

11 {

12 private:

13 double x;
14 double vy;

15 public:

16

17 // Constructors

18

19 // Create Point at origin

20 Point (void) ;

21

22 // Create Point using x-y coordinates
23 Point (double x1,double yl);

24

25 // Create Point as midpoint of two Points
26 Point (const Point& p, const Pointé& q);
27

28 // Create Point as intersection of two lines
29 Point (const Line& 1,const Line &m);
30

31 // Copy constructor

32 Point (const Pointé& p);

33

34 // print a point as (x,Vy)

35 void print (void) const;

36

37 // accessor functions

38 double get x(void) const;

39 double get y(void) const;

40

41 // assign value to x member

42 void set x(double x1);

43

44 // assign value to y member

45 void set y(double yl);

46

CIS27 - Programming in C++ 94

IV — Constructors and Destructors

47 // determine the distance to another point
48 double distance to Point (const Pointé& p) const;
49 };

50

51 #endif

1 // File: ex4-12p.cpp - Point class source file
2

3 #include <cmath>

4 #include <iostream>

5 using namespace std;

6

7 #include "ex4-12p.h"

8 #include "ex4-121.h"

9

10 Point::Point (void)

11 {

12 x = 0.0; vy = 0.0;

13}

14

15

16 Point::Point (double x1,double yl)

17 |

18 x = x1; y = yl;

19 }

20

21

22 Point::Point (const Pointé& p)

23 |

24 X= p.X; Y = p.y;

25 1}

26

27

28 Point::Point (const Pointé& p, const Pointé& q)
29 {

30 X = (p.x+g.x)/2.; yv = (p.y+q.y)/2.;

31 }

32

33

34 Point::Point (const Lineé& 1,const Line &m)

35 |

36 if (l.slope() == m.slope()) // parallel or coincident Lines
37 {

38 x = HUGE_VAL;

39 y = HUGE VAL;

40 }

41 else

42 {

43 X = (m.get_b()*l.get_c()—m.get_c()*l.get_b())/

44 (l.get b()*m.get a()-m.get b()*l.get a());
45 vy (L.get _a()*m.get c()-m.get a()*l.get c())/

CIS27 - Programming in C++ 95

IV — Constructors and Destructors

46 (l.get b()*m.get a()-m.get b()*l.get a());
47 }

48 1}

49

50

51 void Point::print(void) const
52 {

53 cout << "(' <K x << ', <Ky < ")y,
54 }

55

56

57 wvoid Point::set x(double x1)

58 {

59 x = x1;

60 }

61

62

63 vold Point::set y(double yl)

64 {

65 y = yl;

66 }

67

68

69 double Point::get x(void) const
70 |

71 return x;

72}

73

74

75 double Point::get y(void) const
76 {

77 return y;

78 }

79

80 double Point::distance to Point (const Pointé& p) const
81 {

82 return sqrt (square (p.x—-x)+tsquare(p.y-y));

83 }

// File: ex4-121.h - Line class header file

#ifndef LINE H
#define LINE H

#include "ex4-12p.h" // include Point header file

O ~J oy U b W DN

class Line

{

10 private:

11 Point pl;
12 Point p2;

e

CIS27 - Programming in C++ 96

IV — Constructors and Destructors

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

double a,b,c; // coefficients for equation of a Line

public:

// Constructors
// Create Line using two Points
Line (const Pointé& ppl,const Pointé& pp2):;

// Create Line using coefficients for the equation of a Line
Line (double cl, double c2, double c¢3);

// Create Line parallel/perpendicular to a Line through a Point
Line(const Pointé& p,const Line& 1, const char* Line type);

// Create horizontal/vertical Line through a Point
Line (const Pointé& p, const char* Line type); // horiz/vert

through pt

// Create an offset Line from a given Line
Line (const Line& 1,double offset);

// Create Line though a Point with a given lenght and and angle
Line (const Pointé& p,double length, double angle);

// Print Line: equation, Points, and slope
void print (void) const;

// Accessor functions

double get a(void) const { return a; }
double get b(void) const { return b; }
double get c(void) const { return c; }
const Point& get pl() const { return pl; }
const Point& get p2() const { return p2; }

// Length of a Line (distance between two Points)
double length(void) const;

// Midpoint of a Line
Point midpoint () const;

// Slope of a Line
double slope(void) const;

// distance to a parallel Line
double distance to Line(const Line&) const;

// distance to a Point
double distance to Point (const Pointé&) const;

// x-intercept of a Line
double x intercept (void) const;

// y-intercept of a Line
double y intercept (void) const;

CIS27 - Programming in C++ 97

IV — Constructors and Destructors

64 };

65

66 #endif

1 // File: ex4-121.cpp - Line class source file

2

3 #include <cmath>

4 #include <cstring>

5 #include <iostream>

6 using namespace std;

.

8 #include "ex4-121.h"

9

10 Line::Line(const Pointé& ppl,const Point& pp2) pl (ppl), pP2(pp2)

11 |

12 if (slope() == HUGE VAL)

13 {

14 a=1.0;

15 b =0.0;

16 c = -ppl.get x();

17 }

18 else

19 {

20 a = -slope();

21 b =1.0;

22 c = slope()*ppl.get x()-ppl.get y();

23 }

24 }

25

26

27 // create a Line using equation coefficients

28 Line::Line (double cl, double c2, double c3)

29 a(cl), b(c2), c(c3)

30 {

31 if (¢l != 0.0) pl = Point(-c3/c1,0.0);

32 else if (c2 != 0.0) pl = Point(1.0,-c3/c2);

33 else pl = Point(0.0,0.0);

34 if (c2 != 0.0) p2 = Point (0.0,-c3/c2);

35 else if (¢l != 0.0) p2 = Point(-c3/cl,1.0);

36 else p2 = Point(0.0,0.0);

37 }

38

39

40 // create a Line through a Point parallel or perpendicular to a
Line

41 Line::Line(const Point& p,const Line& 1, const char* Line type)
pl(p)

42 {

CIS27 - Programming in C++

98

IV — Constructors and Destructors

43 double m; // slope

44 if (strcmp(Line type, "parallel")==0.0) m = l.slope();
45 else if (l.slope() == 0.0) m = HUGE VAL;
46 else if (l.slope() == HUGE VAL) m = 0.0;
47 elsem = -1./1.slope();

48 if (m == HUGE VAL) {

49 a=1.0;

50 b =10.0;

51 c = -p.get x();

52 p2.set x(pl.get x());

53 p2.set y(pl.get y()+1.0);

54 }

55 else {

56 a = m;

57 b =-1.0;

58 c = -m*p.get x()+p.get y();

59 p2.set x(0.0);

60 p2.set _y(c);

61 }

62 }

63

64

65 // create a vertical/horizontal Line through a Point
66 Line::Line(const Pointé& p, const char* Line type) : pl(p)
67 {

68 if (strcmp(Line type, "vertical") == 0)
69 {

70 p2.set x(pl.get x());

71 p2.set y(pl.get y()+1);

72 a=1.0;

73 b =0.0;

74 c = -pl.get x();

75 }

76 else

77 {

78 p2.set x(pl.get x()+1);

79 p2.set y(pl.get y());

80 a = 0.0;

81 b =1.0;

82 c = -pl.get y();

83 }

84 }

85

86

87 Line::Line(const Line& 1, double offset)
88 :pl(l.pl.get_x(),l.pl.get_y()+offset/fabs(sin(atan(l.slope())))),

89 p2(l.p2.get_x(),l.p2.get_y()+offset/fabs(sin(atan(l.slope()))))
90 {

91 if (slope() == HUGE VAL)
92 {

93 a=1.0;

94 b =10.0;

CIS27 - Programming in C++ 99

IV — Constructors and Destructors

95 c = -pl.get x();

96 }

97 else

98 {

99 = -slope();

100 1.0;

101 c = slope()*pl.get x()-pl.get y();

102 }

103 1}

104

105

106 // create an angled-length Line

107 Line::Line(const Pointé& p,double length, double angle)

108 :pl(p),p2(pl.get x()+length*cos(angle),pl.get y()+length*sin (angle
))

o oW
Il

109 {

110 if (slope() == HUGE VAL)

111 {

112 a=1.0;

113 b =10.0;

114 c = -pl.get x();

115 }

116 else

117 {

118 a = -slope();

119 b =1.0;

120 c = slope()*pl.get x()-pl.get y();
121 }

122 }

123

124

125 wvoid Line::print(void) const

126 {

127 cout << "Line eqn: ";

128 if (a == 1.0) cout << 'x';

129 else 1f (a == -1.0) cout << "-x";
130 else if (a != 0.0) cout << a << 'x';
131 if ((a !'= 0.0) && (b != 0.0)) cout << " + ";
132 if (b == 1.0) cout << 'y';

133 else if (b == -1.0) cout << "-y";
134 else if (b !'= 0.0) cout << b << 'y';
135 if (¢ !'= 0.0) cout << " + " << ¢c;
136 cout << " = Q";

137 cout << " pts: ";

138 pl.print();

139 cout << ', ";

140 p2.print () ;

141 cout << " slope: " << slope() << endl;
142 }

143

144

145 double Line::length(void) const

CIS27 - Programming in C++ 100

IV — Constructors and Destructors

146
147

148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

{

return sqrt (square (p2.get x()-pl.get x())+square((p2.get y()-
pl.get_yv())));

}

Point Line::midpoint () const

{

return
Point ((pl.get x()+p2.get _x())/2, (pl.get_y()+p2.get_y())/2);

}

double Line::slope(void) const

{

if (! (p2.get x()-pl.get x())) return HUGE VAL;

else return ((p2.get y()-pl.get y())/(p2.get x()-pl.get x()));

}

// returns distance from a Line to a Point
double Line::distance to Point (const Pointé& p) const
{
return (fabs(a*p.get x()+b*p.get y()+c)/
sgrt (square (a) tsquare (b))) ;

// returns distance between two parallel Lines
double Line::distance to Line(const Line& 1) const
{

if (slope() != l.slope()) return 0.0;

else return distance to Point(l.pl);

}

double Line::x intercept(void) const
{

if (a != 0.0) return -c/a;

else return HUGE VAL;

}

double Line::y intercept (void) const
{

if (b != 0.0) return -c/b;

else return HUGE VAL;

}

1
2

// File: ex4-12m.cpp - main()

CIS27 - Programming in C++ 101

IV — Constructors and Destructors

3 #include <iostream>

4 #include <iomanip> // for setprecision

5 using namespace std;

6

7 #include "ex4-12p.h"

8 #include "ex4-121.h"

9

10

11 const double pi = 3.14159265;

12

13

14 int main(void)

15 {

16 cout << setprecision(3) << endl; // print with 3 decimal
place accuracy

17

18 Point origin;

19 Point pl(1.,2.);

20 Point p2(3.0,4.0);

21 Point p3(3.0,5.0);

22 Point p4(4.0,5.0);

23 Point p5(0.0,5.0);

24 Point p6(-2.0,3.0);

25

26 Line 11 (pl,p2);

27 Line 12 (p2,p3):

28 Point p7(11,12);

29 Line l3(p3 r4);

30 Line 14 (p5, p6)

31 Line 15(1 ,3.) 7

32 Line (pl l4 "parallel");

33 Line 17(pl,14,"perpendicular");

34 Line 18 (p6,"vertical");

35 Line l9(p7 "horizontal");

36 Line 110(14,1.0);

37 Line 111(15,-2.0);

38 Line 112 (origin,4.0,pi/3.0);

39 Line 113(pl,5.0,-pi/4.0);

40

41 cout << "origin="; origin.print(); cout << endl;

42 cout << "pl="; pl.print(); cout << endl;

43 cout << "p2="; p2.print(); cout << endl;

44 cout << "p3="; p3.print(); cout << endl;

45 cout << "p4="; pd.print(); cout << endl;

46 cout << "p5="; pS.print(); cout << endl;

47 cout << "p6="; pb6.print(); cout << endl;

48 cout << "p7="; p7.print(); cout << endl;

49 cout << "11-"; 1ll.print();

50 cout << "1l (x-intercept): " << 1l.x intercept()

51 << " (y-intercept): " << 1ll.y intercept() << endl;

52 cout << "12-";12.print();

53 cout << "13-";13.print();

CIS27 - Programming in C++ 102

IV — Constructors and Destructors

54 cout << "14-";14.print();

55 cout << "15-";15.print();

56 cout << "le6-";1l6.print () ;

57 cout << "17-";17.print () ;

58 cout << "18-";18.print();

59 cout << "19-";19.print () ;

60 cout << "110-";110.print();

61 cout << "111-";111l.print();

62 cout << "112-";112.print();

63 cout << "113-";113.print();

64

65 cout << "length of 11 = " << 1l.length() << endl;

66 cout << "length of 12 = " << 12.length() << endl;

67 cout << "midpoint of 11 = "; 1ll.midpoint () .print(); cout << endl;

68 cout << "distance pl to p2 = " << pl.distance to Point (p2) <<
endl;

69 cout << "distance pl to p3 = " << pl.distance to Point (p3) <<
endl;

70 cout << "distance pl to p4 = " << pl.distance to Point (p4) <<
endl;

71 cout << "distance p2 to p3 = " << p2Z.distance to Point (p3) <<
endl;

72 cout << "distance pl to pl = " << pl.distance to Point (pl) <<
endl;

73 cout << "distance 11 to p3 = " << ll.distance to Point (p3) <<
endl;

74 cout << "distance 11 to p4 = " << ll.distance to Point (p4) <<
endl;

75 cout << "distance 12 to p5 = " << l2.distance to Point (p5) <<
endl;

76 cout << "distance 13 to p6 = " << 1l3.distance to Point (p6) <<
endl;

77 cout << "distance 11 to 14 = " << 1ll.distance to Line(1l4) <<
endl;

78 return 0;

79 }

*HEFxxxxX Qutput (MS Visual C++ 2008) *****xx*

origin=(0,0)

pl: (1,2)

p2: (3,4)

p3: (3,5)

p4: (4,5)

p5: (0,5)

p6: (_21 3)

p7=(3,4)

11-Line egn: -x + y + -1 = 0 pts: (1,2),(3,4) slope: 1

11 (x-intercept): -1 (y-intercept): 1

12-Line egn: x + -3 = 0 pts: (3,4),(3,5) slope: 1.#J

13-Line egn: y + -5 =0 pts: (3,5), (4,5) slope: O

14-Line egn: -x + y + -5 =0 pts: (0,5), (-2,3) slope: 1

CIS27 - Programming in C++ 103

IV — Constructors and Destructors

15-Line egn: x + 2y + 3 = 0 pts: (-3,0),(0,-1.5) slope: -0.5
16-Line egn: x + -y + 1 = 0 pts: (1,2),(0,1) slope: 1
17-Line egn: -x + -y + 3 = 0 pts: (1,2),(0,3) slope: -1
18-Line egn: x + 2 = 0 pts: (-2,3),(-2,4) slope: 1.#J
19-Line egn: y + -4 = 0 pts: (3,4), (4,4) slope: O

110-Line egn: -x + y + -6.41 = 0 pts: (0,6.41), (-2,4.41) slope: 1
111-Line egn: 0.5x + yv + 5.97 = 0 pts: (-3,-4.47),(0,-5.97) slope:
-0.5

112-Line egn: -1.73x + y = 0 pts: (0,0),(2,3.406) slope: 1.73
113-Line egn: 1x + y + -3 =0 pts: (1,2),(4.54,-1.54) slope: -1
length of 11 = 2.83

length of 12 =1

midpoint of 11 = (2,3)

distance pl to p2 = 2.83

distance pl to p3 = 3.61

distance pl to pd4d = 4.24

distance p2 to p3 =1

distance pl to pl =0

distance 11 to p3 = 0.707

distance 11 to p4 = 0

distance 12 to pb5 = 3

distance 13 to p6 = 2

distance 11 to 14 = 2.83

******(Dutput(gcc version 4.3.2 (GCC) undex Linux)******

Compile command: g++ ex4-12*.cpp -Wall

*khkkkkk Output *khkkkkk

origin=(0,0)

pl=(1,2)

p2=(3,4)

p3=(3,5)

p4=(4,5)

p5=(0,5)

p6=(-2,3)

p7=(3,4)

11-Line egn: -x + y + -1 =0 pts: (1,2),(3,4) slope: 1

11 (x-intercept): -1 (y-intercept): 1

12-Line egn: x + -3 = 0 pts: (3,4),(3,5) slope: inf

13-Line egn: y + -5 =0 pts: (3,5), (4,5) slope: O

1l4-Line egn: -x + y + -5 =0 pts: (0,5), (-2,3) slope: 1

15-Line egn: x + 2y + 3 = 0 pts: (-3,0),(0,-1.5) slope: -0.5
16-Line egn: x + -y + 1 =0 pts: (1,2),(0,1) slope: 1

17-Line egn: -x + -y + 3 = 0 pts: (1,2),(0,3) slope: -1

18-Line egn: x + 2 = 0 pts: (-2,3),(-2,4) slope: inf

19-Line eqgn: y + -4 = 0 pts: (3,4), (4,4) slope: O

110-Line egn: -x + y + -6.41 = 0 pts: (0,6.41), (-2,4.41) slope: 1
111-Line egn: 0.5x + y + 5.97 = 0 pts: (-3,-4.47),(0,-5.97) slope: -0.5
112-Line egn: -1.73x + y = 0 pts: (0,0), (2,3.46) slope: 1.73
113-Line egn: 1x + vy + -3 = 0 pts: (1,2),(4.54,-1.54) slope: -1
length of 11 = 2.83

length of 12 =1

CIS27 - Programming in C++ 104

IV — Constructors and Destructors

midpoint of 11 = (2,3)

distance pl to p2 = 2.83
distance pl to p3 = 3.61
distance pl to p4 =
distance p2 to p3 =
distance pl to pl =
distance 11 to p3 =
distance 11 to p4 =
distance 12 to p5 =
distance 13 to p6 =
distance 11 to 14 =

707

NN WO OO b

.83

CIS27 - Programming in C++ 105

IV — Constructors and Destructors

Copy Constructor Notes

Why write a copy constructor? The compiler will provide one for you. Why bother, do you
really need more practice writing constructors? The answer depends on your class. The
compiler provided copy constructor performs a “shallow copy”. This means that each data
member is “cloned” for the new copy. For example, consider this class:

class X {

int ay

double b;

char c[1l0];

}i

X Objectl;

X Object?2 (Objectl) ; // this uses the copy ctor

The compiler provided copy constructor would copy each of Object]l’s members to Object2, so
two object would be identical. In this case, you do not need to write a copy constructor.

What about this class?

class Y {

ghar* ptr;

};

; Object3;

Y Object4d (Object3) ; // this uses the copy ctor

Again, the compiler provided copy constructor would perform a shallow copy. This means that
Object4’s ptr would contain the same address as Object3’s ptr. Is that what you want? This
means that if you change the value that ptr points to for Object 3, then you also changed it for
Object 4. Hence, the two objects and not autonomous. So, you should write a copy constructor
in this case, so that ptr points to its own value. The typical copy constructor for this case should
look something like this:

Y::Y(const Y& _Y) {

ptr = new char[strlen(Y.ptr)+1];
strcpy (ptr, Y.ptr);

CIS27 - Programming in C++ 106

IV — Constructors and Destructors

Example 4-13 — This should demonstrate why you might want to write a copy constructor.

1 // File: ex4-13.cpp - Why write a copy constructor?
2

3 #include <iostream>

4

5 class ABC

6

7 int * p;

8 public:

9 ABC (int P=0) { p = new int(P); }
10 ~ABC() { delete p; }

11 int value () const { return *p; }
12 };

13

14 void print (ABC object)

15 {

16 std::cout << object.value() << std:: endl;
17 }

18

19 int main()

20 {

21 ABC x(2);

22 print (x);

23 ABC v (3);

24 print (y)

25 print (x);

26}

27

*khkkkk Output *khkkkk

MS Visual Studio Enterprise 2015

2

3

-572662307

rerrtl Runtime error PN

gnu g++ compiler, version 4.3.2 on Linux

2
3
0

CIS27 - Programming in C++ 107

IV — Constructors and Destructors

Note: the gnu c++ compiler has an option to compile with warnings that violate the style
guidelines for Scott Meyers’ Effective C++ book, -Weffc++. This option would have produced
the following warnings:

/home/joe/deanza/examples> g++ ex4-13.cpp -Wall -Weffc++

ex4-13.cpp:6: warning: ‘class ABC' has pointer data members
ex4-13.cpp:6: warning: but does not override "ABC (const ABC&)'
ex4-13.cpp:6: warning: or ‘operator=(const ABC&)'

ex4-13.cpp: In constructor "ABC::ABC(int) ':
ex4-13.cpp:9: warning: "ABC::p' should be initialized in the member
initialization list

What should the signature of a copy constructor look like?

class Cls

{

Cls(Cls cls); // 1. argument passed by value?
Cls(Cls& cls); // 2. argument passed by reference?
Cls(const Clsé& cls); // 3. argument passed by reference to const?

1. won’t work. Ifit did, it would be an infinitely recursive call.

2. Works, but it’s not as “safe” as 3. (do you know why?)
3. This is the best. You may not have 2 and 3 present together.

CIS27 - Programming in C++ 108

IV — Constructors and Destructors

Static Class Objects

How does a static object behave in C++? If you declare an object as static, is it instantiated only
one time, like C? Can you return a static object by reference?

// File: ex4-14.cpp - Static objects

O ~J o O W DN

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <iostream>
using namespace std;

class thing {
public:
thing () { cout<<"thing constructor called for "<<this<<endl; }
~thing () { cout<<"thing destructor called for "<<this<<endl; }

};

thing& funk() {
static thing T;
cout << "funk () called: &T=" << &T << endl;
return T;

}

int main() {
cout << & (funk()) << endl;
cout << & (funk()) << endl;

(

cout << &
return 0;

funk()) << endl;

kX kKKK KK Program Output KX kKKK KK

thing constructor called for 0x22640
funk () called: &T=0x22640

0x22640
funk () called: &T=0x22640
0x22640
funk () called: &T=0x22640
0x22640

thing destructor called for 0x22640

v

How many different objects were created in this program?

CIS27 - Programming in C++ 109

IV — Constructors and Destructors

The delete operator and destructors

When you delete a class object, the destructor is called for the class.

If you delete an array of class objects, without using delete [], the destructor may only be

called once, instead of once for each array object.

Example 4-15 - delete and destructors

o J oy U W DN

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// File: eTestd4-15.cpp - delete or delete []

#include <iostream>
using namespace std;

class Test

{

int n;

public:
Test () { n = 0; cout << "Test constructor called\n";
~Test () { cout << "Test destructor called\n"; }

};

int main (void)

{
Test* ptrTest;

cout << "allocate space for 1 Test\n";
ptrTest = new Test;
delete ptrTest;

cout << "allocate space for 3 Tests\n";
ptrTest = new Test[3];
delete ptrTest;

}

// MS Visual C++ 2008 calls the destructor once, then errors

// Digital Mars C++ Compiler (ver 8.42) calls the destructor once

// gnu compiler (ver 4.3.1) calls destructor once, then crashes

return O;

kKK kKK Output kK kKKK

allocate space for 1 X

X
X

constructor called
destructor called

allocate space for 3 Xs

X

XX

constructor called
constructor called
constructor called
destructor called

What is the problem here?

CIS27 - Programming in C++

110

IV — Constructors and Destructors

Containment, Initializers, and Default Constructors

The following example demonstrates how constructors work in a container relationship. It also
shows how you can control which constructor is called in the contained class by using
constructor initialization list syntax.

Example 4-16 — Containment and constructors

1 // File: ex4-16.cpp - containment and constructors
2

3 #include <iostream>

4 using namespace std;

5

6

7 class One

8

9 int member;

10 public:

11 One () { cout << "One default ctor called\n";}
12 One (int j) : member (j)

13 { cout << "One second ctor called" << endl;}
14 3},

15

16 class Two

17 |

18 One member;

19 public:

20 Two () { cout << "Two default ctor called" << endl; }
21 Two (int k) : member (k)

22 { cout << "Two second ctor called" << endl;}
23 };

24

25 int main ()

26 {

27 cout << "declare objectl" << endl;

28 Two objectl;

29 cout << "declare object2" << endl;

30 Two object2(5);

31 return 0;

32 }

* Kk kK kK Output * Kk kK kK

declare objectl

One default ctor called
Two default ctor called
declare object?2

One second ctor called
Two second ctor called

CIS27 - Programming in C++ 111

IV — Constructors and Destructors

Containment vs. Nested classes and constructor calls

The following example illustrates the difference in constructor calls between a container
relationship and a nested organization

O 1 o) U w N

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// Example 4-14a.cpp -
// Containment vs.
// Contributed by Raymond White 5/2009

#include <iostream>
using namespace std;

class Innermost

{

Nested classes and constructor calls

int i;

public:
Innermost () { cout << "ctor of Innermost\n"; }
~Innermost () { cout << "dtor of Innermost\n"; }

}i

class Inner

{

Innermost inm;

int 1i;

public:
Inner () { cout << "ctor of Inner\n";
~Inner () { cout << "dtor of Inner\n";

};

class Outer

{

Inner in;

int 1i;

public:
Outer () { cout << "ctor of Outer\n";
~Outer () { cout << "dtor of Outer\n";

b

class Outermost

{

}
}

}
}

Outer o;
int 1i;
public:
Outermost () { cout << "ctor of Outermost\n"; }
~Qutermost () { cout << "dtor of Outermost\n"; }

}s

class NestedOutermost
{

int 1i;
public:

class NestedOuter

CIS27 - Programming in C++

112

IV — Constructors and Destructors

48 {

49 int 1i;

50 public:

51 class NestedInner

52 {

53 int i;

54 public:

55 class NestedInnermost

56 {

57 int 1i;

58 public:

59 NestedInnermost () { cout << "ctor of NestedInnermost\n"; }
60 ~NestedInnermost () { cout << "dtor of NestedInnermost\n"; }
o0l };

62

63 NestedInner () { cout << "ctor of NestedInner\n"; }

64 ~NestedInner () { cout << "dtor of NestedInner\n"; }

65 }s

66

67 NestedOuter () { cout << "ctor of NestedOuter\n"; }

68 ~NestedOuter () { cout << "dtor of NestedOuter\n"; }

69 }s

70

71 NestedOutermost () { cout << "ctor of NestedOutermost\n"; }
72 ~NestedOutermost () { cout << "dtor of NestedOutermost\n"; }
73 };

74

75

76 1int main ()

77 {

78 Outermost myOutermost;

79 NestedOutermost myNestedOutermost;

80 cout << "sizeof (myOutermost)=" << sizeof (myOutermost) << endl;
81 cout << "sizeof (myNestedOutermost)=" =<<sizeof (myNestedOutermost)
82 << endl;

83 return 0;

84 }

kkkkk Qutput KEkkk*

ctor of Innermost

ctor of Inner

ctor of Outer

ctor of Outermost

ctor of NestedOutermost

sizeof (myOutermost)=16
sizeof (myNestedOutermost) =4

dtor
dtor
dtor
dtor
dtor

of NestedOutermost
of Outermost

of Outer

of Inner

of Innermost

CIS27 - Programming in C++ 113

IV — Constructors and Destructors

As you can see from the output, the creation of the (container relationship) Outermost object
results in four constructor calls whereas the NestedOutmost results in only one constructor call.

CIS27 - Programming in C++ 114

IV — Constructors and Destructors

Explicit Constructors

The keyword explicit is used to specify that a constructor may only be used for object

instantiation and not for automatic conversion. explicit should only be applied to single-

argument constructors, or contructors that can be invoked with one argument, since the idea is to

avoid automatic conversion of one type to another (class) type.
Here’s an example that demonstrates the effect.

Example 4-17 — Explicit constructors

1 // File: ex4-17.cpp - explicit constructors
2

3 #include <iostream>

4 using namespace std;

5

6 class A

7 A

8 public:

9 A(int) ; // non-explicit ctor
10 };

11

12

13 class B

14

15 public:

16 explicit B(int); // explicit ctor
17 3}

18

19 A::A(int) {

20 cout << "A ctor called\n";

21 }

22

23 B::B(int) { // do not repeat keyword explicit
24 cout << "B ctor called\n";

25 '}

26

27 void funkA (A object) {

28 cout << "funkA called\n";

29 }

30

31 void funkB (B object) {

32 cout << "funkB called\n";

33}

34

35 void funkAB (A obj)

36 {

37 cout << "funkAB(A) called\n";

38 }

39

40 void funkAB(B obj)

CIS27 - Programming in C++

115

IV — Constructors and Destructors

41 |

42 cout << "funkAB(B) called\n";

43}

44 1int main ()

45 {

46 A objA(2); // instantiate an A object

47 B objB(3); // instantiate a B object

48

49 funkA (obja) ; // call funkA() with an exact argument match

50

51 funkA (9) ; // call funkA() with an non-exact argument match
52

53 funkB (objB) ; // call funkB() with an exact argument match

54

55 // funkB(16); // compile error: cannot convert int to a B object
56

57 funkAB (6) ; // compile error if B(int) is not explicit

58

59 return O;

60 }

* kK kKK Output * kK kKK

A ctor called

B ctor called
funkA called

A ctor called
funkA called
funkB called
funkAB (A) called

CIS27 - Programming in C++ 116

V — More Class Concepts

More Class Concepts
The this Pointer

this is a special pointer used inside member functions to point to the object itself. *this (this
dereferenced) represents the “current” object. this is the address of the object. this is most
commonly used to return by reference.

Example 5-1 - The this Pointer

1 // File: ex5-1l.cpp - the this pointer

2 #include <iostream>

3 using namespace std;

4

5 class Thing

6

7 private:

8 int x;

9 double y;

10 public:

11 Thing (int argl = 0, double arg2 = 0.0); // constructor
12 void copyThing (Thingé&) ;

13 void printThing(void) { cout << x << ' ' << y << endl; }
14 };

15

16 Thing::Thing(int argl, double arg2?2) : x(argl), y(arg2)
17 {}

18

19 wvoid Thing::copyThing (Thing& z)

20 |

21 if (this == &z)

22 {

23 cout << "Don't copy me to myself\n";
24 return;

25 }

26 X = zZ.X;

27 y = Z2.Y7

28 '}

29

30 int main (void)

31 |

32 Thing a(5,3.14);

33 Thing b (1) ;

34 Thing c;

35 a.printThing () ;

36 b.printThing () ;

37 c.printThing () ;

38 c.copyThing(a); // copy Thing-a to c
39 c.printThing () ;

40 b.copyThing(b); // copy Thing-b to b

CIS27 - Programming in C++ 117

V — More Class Concepts

41 b.printThing () ;
42}

CIS27 - Programming in C++ 118

V — More Class Concepts

Chaining Functions

Functions may be "chained" by returning a reference to the class type.

Example 5-2 - Chaining Functions

1 // File: ex5-2.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 class Circle

7 A

8 private:

9 double radius;

10 public:

11 Circle (double r) : radius(r) {} // constructor
12 Circle& areal() ;

13 Circleé& circumference () ;

14}y

15

16 Circleé& Circle::areal()

17 {

18 cout<<"The area of the Circle is "
19 << 3.14 * radius * radius << endl;
20 return (*this);

21 }

22 Circleé& Circle::circumference ()

23 |

24 cout<<"The circumference of the Circle is "
25 << 2. * 3.14 * radius << endl;
26 return (*this);

27 '}

28

29 int main ()

30 |

31 Circle cl1(5);

32 cl.area () .circumference();

33

34 Circle c2(4.45);

35 c2.circumference () .area ()

36}

kKK kKK Output XKk kKK

The area of the circle is 78.5

The circumference of the circle is 31.4
The circumference of the circle is 27.946
The area of the circle is 62.1799

v Why are the area() and circumference() functions not defined as const?

CIS27 - Programming in C++ 119

V — More Class Concepts

Static Data Members

A static data member is a data member that is shared by all instances of the class. There is only
one occurrence of the static data member regardless of how many class objects exist. Static data
members are still access controlled (private vs. public). Private static data members may not be
accessed by non-member functions. Non-const static data members must be defined (initialized)
outside of the class definition and outside of member function definitions.

Example 5-3 - Static Data Member

1 // File: ex5-3.cpp - static data member
2

3 #include <iostream>

4 using namespace std;

5

6 // function prototype

7 wvoid funk();

8

9 class Circle

10 {

11 private:

12 double radius;

13 static unsigned numCircles;

14 public:

15 Circle (double r = 1.0) : radius(r) { numCircles++;}
16 Circle (const Circle& C) : radius(C.radius) { numCircles++;}
17 ~Circle () {numCircles--;}

18 void printCircleCount () ;

19 };

20

21 unsigned Circle::numCircles = 0; // static member definition
22

23 void Circle::printCircleCount ()

24 {

25 cout << "Number of Circles = " << numCircles << endl;
26 }

27

28

29 int main ()

30 |

31 Circle cl(5.);

32 cl.printCircleCount () ;

33 Circle c2;

34 c2.printCircleCount () ;

35 cl.printCircleCount();

36 {

37 Circle c¢3(1.5);

38 c3.printCircleCount() ;

39 }

40 cl.printCircleCount () ;

41 Circle c4(cl);

CIS27 - Programming in C++ 120

V — More Class Concepts

42 cl.printCircleCount();

43

44 funk () ;

45 cl.printCircleCount () ;

46}
47

48 void funk ()

49

50 Circle tempLocal;
51 tempLocal.printCircleCount () ;

52}

* Kk Kk kk

Number
Number
Number
Number
Number
Number
Number
Number

Static Member Functions

Output ****x*

of
of
of
of
of
of
of
of

Circles
Circles
Circles
Circles
Circles
Circles
Circles
Circles

Wb wbdhwNdN -

A static member function is a member function that cannot access the this pointer for an object.

This means that the static member function cannot access the non-static data members of a class.

It is used to access the static data members of a class. Static member functions are called using
the class name and scope resolution operator, providing it has public access, as illustrated in the
example below. Static member functions may not be const member functions.

Example 5-4 - Static Member Function

{

O ~J oy U b W DN

[salNe]
(@]

// File:

class Circle

private:
double radius;
static unsigned numCircles;

11 public:

12
13
14

Circle (double r
~Circle();
static void print numCircles();

ex5-4.cpp

#include <iostream>
using namespace std;

.0);

CIS27 - Programming in C++

121

V — More Class Concepts

15 static void resetNumCircles() ;
16 };

17

18 unsigned Circle: :numCircles = 0 ;
19

20 Circle::Circle (double r) radius (r)
21 {

22 numCircles++;

23}

24

25 Circle::~Circle ()

26 |

27 numCircles—--;

28 '}

29

30 void Circle::print numCircles()
31 {

32 cout << "number of Circles = " << numCircles << endl;
33}

34

35 wvoid Circle::resetNumCircles ()
36 {

37 numCircles = 0;

38 }

39

40 int main()

41

42 Circle cl(5.);

43 Circle::print numCircles () ;
44 Circle c2(4.);

45 Circle::print numCircles () ;
46 Circle::resetNumCircles();
47 Circle::resetNumCircles();
48 Circle::print numCircles () ;
49 Circle c3(1.);

50 Circle::print numCircles();
51 }

* Kk Kk k% Output * k% k% %

number of Circles =1

number of Circles = 2

number of Circles = 0

number of Circles =1

CIS27 - Programming in C++

122

V — More Class Concepts

Friend Functions

A friend function is a non-member function that has access to the private parts of a class.
Friendship can be granted in three ways:

e to an independent (non-class member) function

e toa class member function of another class

e to another class (to all functions in that class)

A friend function is always a non-class member. A function outside of a class cannot "seek
friendship". Friendship is only granted by a class to another function (or class). A friend has

access to all private members.

It is common practice for friend functions to have arguments which include references to the
(friendship-granting) class.

Example 5-5 - An independent friend

1 // File: ex5-5.cpp - a friend to the Circle class
2

3 #include <iostream>

4 using namespace std;

5

6 class Circle

7 A

8 private:

9 double radius;

10 public:

11 Circle (double r = 1.0) : radius(r) { }
12 friend void print (const Circleé);

13 };

14

15

16 int main(void)

17 {

18 Circle cl(5.);

19 print (cl);

20 Circle c2;

21 print (c2);

22 }

23

24 void print (const Circleé& c)

25 |

26 cout << "This Circle has radius " << c.radius<< endl;
27 }

CIS27 - Programming in C++ 123

V — More Class Concepts

Friendly advice

Friend functions are not affected by their location in a class definition or any access
specifiers.

Granting friendship to another function or class is not reciprocal. If class xyz declares that
class abc is a friend, then class xyz is not necessarily a friend to class abc.

Friendship is not transitive. If class xyz grants friendship to class abc, and class abc grants
friendship to class def, then the friendship from xyz is not automatically granted to def.

Friendship is not inherited. The friend of a base class is not a friend to a class derived from
the base. Further, if a base class, B, is a friend to another class, C, classes derived from B are
not friends of C. (My friends are not necessarily my children's friends, and my children's
friends are not my friends.)

Class member functions operate on the object that invokes the function. Friend functions
operate on objects that are passed as arguments.

Granting friendship to another class

If class dog grants friendship to class cat, then any function of the cat class can access any
member of the dog class.

The word class is optional in the grant of friendship to another class.

Granting friendship to a function of another class

To grant friendship to a member of another class, you must indicate the class name and
function name using the scope resolution operator.

If you want the dog class to grant friendship to the meow function of the cat class, you must:
1) forward declare the dog class.

2) define the cat class, declaring the meow function, but not
defining it.

3) define the dog class, identifying the friend function, cat::meow().

4) define the cat member functions.

CIS27 - Programming in C++ 124

V — More Class Concepts

Example 5-6 - A friend to the card and deck classes

OW O 1 o U b W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

// File: ex5-6.cpp - a friend to the card and deck classes

#include <iostream>

#include <cstdlib> // needed for rand() function
#include <string>

using namespace std;

const string value name[1l3] =
"two", "three", "four","five", "six", "seven", "eight", "nine", "ten", "jack

"’ "queen"’ "king" , "ace" } ,.

const string suit name[4] =
{"clubs", "diamonds", "hearts", "spades"};

const int HandSize = 5;
const int DeckSize = 52;

class Deck; // forward declare the Deck class

class Hand

{

private:

int card[HandSize];
public:

Hand () { }

void dealMe (Decké&) ;
void print (const Decké&) const;

};

class Card

{

private:
int value;
int suit;

public:
Card(int arg = 0) : value(arg$%$l3), suit(arg%4) { }
int get value() const
{
return value;
}
int get suit() const

{

return suit;

}

void print (void) const;

friend void Hand: :print(const Decké&) const;
}i

void Card::print () const

{

cout << value name[value] << " of " << suit name[suit] << endl;

CIS27 - Programming in C++ 125

V — More Class Concepts

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

class Deck
{
friend class Hand;
private:
Card d[DeckSize];
int next Card;
public:
Deck () ;
void shuffle();
void deal (int=HandSize) ;
void print () const;

}i

Deck: :Deck ()

{
for (int i = 0; 1 < DeckSize; i++) d[i] = Card(i);
next Card = 0;

}

void Deck::shuffle ()
{
int 1, k;
Card temp;
cout << "I am shuffling the Deck\n";
for (i = 0; 1 < DeckSize; 1i++)
{

k = rand() % DeckSize;

temp = d[i];
dfi] = d[k];
d(k] = temp;
}
}
void Deck::print () const

{
for (int i = 0; i < DeckSize; i++) d[i].print():;

}

void Hand: :dealMe (Decké& deck)
{

for (int 1 = 0; 1 < HandSize; i++) card[i] = deck.next Card++;

}

void Hand: :print (const Decké& deck) const
{
cout << "here is your hand:\n";
for (int 1 = 0; 1 < HandSize; i++) deck.d[card[i]].print();
}

CIS27 - Programming in C++ 126

V — More Class Concepts

103
104
105
106
107
108
109
110
111
112
113
114
115
116

int main (void)

{

Deck poker;
poker.shuffle();
poker.print () ;

Hand Joe;

Hand Mary;

Joe.dealMe (poker) ;
Mary.dealMe (poker) ;
cout << "\nOk, Joe ";
Joe.print (poker) ;
cout << "\nOk, Mary ";
Mary.print (poker) ;

*khkkkik Output *khkkkik

I am shuffling the deck
ten of hearts

ace of diamonds
queen of hearts
three of hearts
four of diamonds
eight of diamonds
eight of spades
eight of hearts
seven of spades
six of hearts

Ok, Joe here is your hand:
ten of hearts

ace of diamonds

queen of hearts

three of hearts

four of diamonds

Ok, Mary here is your hand:
eight of diamonds

eight of spades

eight of hearts

seven of spades

six of hearts

v

v

Does Hand::print() have to be declared as a friend of the Card class?

How can you change the code to eliminate all friend functions?

CIS27 - Programming in C++ 127

V — More Class Concepts

Example 5-7 - More friendly poker

1 // File: ex5-7.cpp
2
3 #include <iostream>
4 #include <cstdlib> // needed for rand() function
5 #include <string>
6 #include <cassert>
7 #include <ctime>
8 using namespace std;
9
10 const string value name[l3] = {"two","three","four","five","six",
11
"Seven", "eight"’ "nine", "ten", "jack"’ "queen"’ "king", "ace"
12 };
13 const string suit name[4] = {"clubs","diamonds", "hearts", "spades"};
14
15 const int HandSize = 5;
16 const int DeckSize = 52;
17
18 class Deck;
19
20 class Hand
21
22 friend void threeOrFourOfAKind (const Handé&) ;
23
24 public:
25 Hand (const stringé&, Decké&):;
26 void print () const;
27 string getName () const
28 {
29 return name;
30 }
31 const Decké& getDeck() const
32 {
33 return deck;
34 }
35 private:
36 string name;
37 int Card no[HandSize];
38 Decké& deck;
39 void dealMe (Decké&) ;
40)y
41
42
43 Hand::Hand(const stringé& n, Deck& d) : name(n), deck(d)
44
45 dealMe (deck) ;
46 '}
47
48 class Card
49 {

50 private:

CIS27 - Programming in C++ 128

V — More Class Concepts

51 int value;

52 int suit;

53 public:

54 Card (int x = 0) : value(x%13), suit (x%4) { }

55 int get value(void) const

56 {

57 return value;

58 }

59 int get suit() const

60 {

61 return suit;

62 }

63 void print (void) const;

64 };

65

66 void Card::print() const

67 {

68 cout << (value name[value]) << " of " << (suit name[suit])
endl;

69 }

70

71

72 class Deck

73 {

74 friend void threeOrFourOfAKind (const Handé&) ;

75 friend class Hand;

76 public:

77 Deck () ;

78 void print (void) const;

79

80 private:

81 Card d[DeckSize];

82 int nextCard;

83 void shuffle (void);

84 };

85

86

87 Deck::Deck() : nextCard(0)

88 {

89 for (int i = 0; 1 < DeckSize; i++) d[i] = Card(i);
90 nextCard = 0;

91 shuffle();

92 }

93

94 wvoid Deck::shuffle(void)

95 {

96 int k;

97 Card temp;

98 cout << "I am shuffling the Deck\n";
99 for (int i = 0; 1 < DeckSize; i++)
100 {

101 k = rand() % DeckSize;

<<

CIS27 - Programming in C++ 129

V — More Class Concepts

102 temp = d[i];
103 dii] = d[k];
104 d[k] = temp;
105 }
106 }
107
108 wvoid Deck::print(void) const
109 {
110 for (int i = 0; i < DeckSize; i++) d[i].print():;
111}
112
113 wvoid Hand: :dealMe (Decké& deck)
114 {
115 assert (deck.nextCard < DeckSize-4);
116 for (int 1 = 0; i1 < HandSize; i++) Card nol[i] =
deck.nextCard++;
117 }
118
119 void Hand::print () const
120 {
121 cout << "QOk " << name << ", here is your hand:" << endl;
122 for (int 1 = 0; i < HandSize; i++) deck.d[Card no[i]].print();
123 threeOrFourOfAKind (*this) ;
124 cout << endl;
125
126 '}
127
128 int main (void)
129 {
130 srand(time (0)) ;
131 Deck poker;
132
133 Hand curly("Curly",poker);
134 Hand larry("Larry",poker);
135 Hand moe ("Moe", poker) ;
136
137 curly.print();
138 larry.print () ;
139 moe.print () ;
140 }
141
142 wvoid threeOrFourOfAKind(const Hand& who)
143 |
144 int temp;
145 int Card count;
146 for (int 1 = 0; 1 < 3; i++)
147 {
148 Card count = 1;
149 temp = (who.getDeck().d[who.Card nol[i]]).get value();
150 for (int j = 1 + 1; j < HandSize; j++)
151 if (temp ==
who.getDeck () .d[who.Card no[]]].get value()) Card count++;

CIS27 - Programming in C++ 130

V — More Class Concepts

152 if (Card count > 2)

153 {

154 cout << "Hey, you have " << Card count << ' ' <<
value name[temp] << "s.\n";

155 }

156 }

157 }

158

CIS27 - Programming in C++ 131

V — More Class Concepts

* kK Kk kK Sample Run * kK kK kK

I am shuffling the Deck

Ok Curly, here is your hand:

jack of diamonds
six of hearts
eight of diamonds
nine of spades
six of clubs

Ok Larry, here is your hand:

ten of hearts
six of spades
seven of hearts
five of spades
eight of spades

Ok Moe, here is your hand:
three of hearts

ten of clubs

three of spades

queen of clubs

three of clubs

Hey, you have 3 threes.

CIS27 - Programming in C++

132

V — More Class Concepts

Mutual Friendship

What if you want a function of one class to be a friend of a second class, and a function of the
second class to be a friend of the first class? How do you do it?

Make the bark() function of the dog class a friend of the cat class and the meow() function a
friend of the dog class.

Example 5-8 - Mutual friends

1 // File: ex5-8.cpp

2 // File: ex5-8.cpp

3

4 #include <iostream>

5 #include <string>

6 using namespace std;

7

8 class Cat; // forward declaration
9 class Dog

10 {

11 string name;

12 public:

13 void bark (const Caté&) const;

14 Dog (const string& n) : name(n) { }
15 friend class Cat;

16 1},

17 class Cat

18 {

19 string name;

20 public:

21 void meow (const Dogé&) const;

22 Cat (const stringé& n) : name(n) { }
23 friend void Dog: :bark (const Caté&) const;
24 };

25

26

27 wvoid Dog::bark(const Caté& c) const

28 {

29 for (size t i = 0; 1 < name.size(); i++) cout << " woof ";
30 cout << endl;

31}

32 void Cat::meow(const Dogé& d) const

33 |

34 for (size t i = 0; 1 < name.size(); i++) cout << " meow ";
35 cout << endl;

36 }

CIS27 - Programming in C++ 133

V — More Class Concepts

37 int main ()

38 {

39 Dog bart ("Bart");
40 Cat socks ("Socks");
41 bart.bark (socks);
42 socks.meow (bart) ;
43 1}

* Kk Kk k kK Output * Kk Kk kKK

woof woof woof woof woof
meow meow meow mMeow

CIS27 - Programming in C++ 134

V — More Class Concepts

Linked List

A linked list is a data storage technique that allows for variable size container. Linked lists
typically consists “connected” nodes containing both data and one or more pointers. The
pointer(s) perform the connection to the “next” data item. The most common type of linked lists
are single-ended (containing data and one next pointer) and double-ended (containing data and
two pointers, next and previous).

The following example illustrates a single ended linked list used to store int data.

Example 5-9 — Linked List

1 // file: ex5-9node.h

2

3 #ifndef NODE H

4 #define NODE H

5

6 class List; // forward declaration
7

8 class Node

9 |

10 int data ;

11 Node* next ;

12 Node () ; // disable the default ctor
13 public:

14 Node (int d,Node* n) { data = d; next = n; }
15 friend class List;

16 };

17

18 #endif

1 // file: ex5-91ist.h

2

3 #ifndef LIST H

4 #define LIST H

5

6 #include "ex5-9node.h"

7

8 class List

9 |

10 Node* top ;

11 public:

12 List () ;

13 ~List () ;

14 void push (int item);
15 int pop();

16 int top () const;

17 void print () const;

18 bool remove (int item) ;
19 Node* find (int item);

CIS27 - Programming in C++ 135

V — More Class Concepts

20
21
22

}s

#endif

O J o O W DN

[sllNe)
(@)

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// file: ex5-91ist.cpp

#include <iostream>
#include <cstdlib>
using namespace std;

#include "ex5-91.h"

List::List ()
{
top = 0;
}

List::~List()
{
Node* temp = top ;
while (temp != 0) {
top = top -> next ;
delete temp;
temp = top ;

void List: :push(int item)
{
Node* temp = new Node (item, top);
if (!'temp) {
cerr<<"Unable to allocate memory for a Node. Exiting
An";
exit (-1);
}
else {
top = temp;
}

int List: :pop()
{
Node* temp = top ;
top = top —->next ;
int value = temp->data ;
delete temp;
return value;

CIS27 - Programming in C++ 136

V — More Class Concepts

45

46

47 int List::top() const

48 {

49 return top -> data ;

50 }

51

52

53 wvoid List::print() const

54 |

55 Node* temp = top ;

56 while (temp != 0) {

57 cout << temp -> data << ' ';
58 temp = temp -> next ;
59 }

60 cout << endl;

61 }

62

63

64 Node* List::find(int item)
65 {

66 Node* temp = top ;

67 while (temp != 0) {

68 if (temp->data == item) return temp;
69 temp = temp -> next ;

70 }

71 return 0;

72}

73

74

75 bool List::remove (int item)
76 {

77 if (!find(item)) {

78 cerr << 1tem << " 1s not in the List\n";
79 return false;

80 }

81 Node* templ = top ;
82 Node* temp2;

83 if (top ->data == item) ({

84 top = top -> next ;

85 delete templ;

86 return true;

87 }

88 while (templ->next ->data != item)
89 temp2 = templ;

90 templ = templ -> next ;
91 }

92 tempZ2 = templ -> next ;

93 templ->next = temp2 -> next ;
94 delete temp2;

95 return true;

96 }

CIS27 - Programming in C++

137

V — More Class Concepts

1 // file: ex5-9main.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 #include "ex5-91ist.h"

7

8 int main (void)

9 {

10 List L;

11 L.push (2);

12 L.push (4) ;

13 L.push(6);

14 L.push(8);

15 L.push(10);

16 L.print();

17 cout << "top=" << L.top()

18 if (L.find(2)) cout << 2 << "
19 if (L.find(5)) cout << 5 << "
20 if (L.find(6)) cout << 6 << "
21 if (L.find(10)) cout << 10 <<
22 L.remove (3);

23 L.remove (6) ;

24 L.print();

25 L.remove (2);

26 L.remove (10) ;

27 L.print();

28

29 return 0;

30 }

<< endl;

is in the list\n";
is in the list\n";
is in the list\n";
" is in the list\n";

kKK kKK Output XKk kKK

10 8 6 4 2

top=10

2 i1s in the 1list

6 is in the 1list

10 is in the 1list

3 is not in the List
10 8 4 2

8 4

CIS27 - Programming in C++

138

V — More Class Concepts

Example 5-10 — Standard Template Library Solution for Example 5-9

1 // File ex5-10.cpp - STL linked list example

2

3 #include <iostream>

4 4#include <list>

5 #include <algorithm> // for copy and find algorithms
6 #include <iterator> // for ostream iterator
7 using namespace std;

8

9 wvoid print(list<int>& lint)

10 {

11 copy (lint.begin(),lint.end(),ostream iterator<int>(cout," "));
12 cout << endl;

13}

14

15 bool find(list<int>& lint, int wvalue)

16 {

17 return find(lint.begin(),lint.end(),value) !=lint.end();
18 }

19

20 int main (void)

21 {

22 list<int> L;

23 L.push front(2);

24 L.push front(4);

25 L.push front(6);

26 L.push front(8);

27 L.push front (10);

28 print (L) ;

29 cout << "top=" << *L.begin() << endl;

30

31 if (find(L,2)) cout << 2 << " is in the list\n";
32 if (find(L,5)) cout << 5 << " is in the list\n";
33 if (find(L,6)) cout << 6 << " is in the list\n";
34 if (find(L,10)) cout << 10 << " 1is in the list\n";
35 L.remove (3);

36 L.remove (6) ;

37 print (L) ;

38 L.remove (2) ;

39 L.remove (10) ;

40 print (L) ;

41 return 0;

42 1}

* Kk Kk Kk kK Output * Kk kK kK

10 8 6 4 2

top=10

2 1s in the 1list
6 is in the list
10 is in the 1list

CIS27 - Programming in C++ 139

V — More Class Concepts

10 8 4 2
8 4

CIS27 - Programming in C++ 140

VI - Function and Operator Overloading

Function and Operator Overloading
Function Overloading

An overloaded function is one with different signatures. A function's signature is its argument
list. For example,

void funk(int);
int funk(float);
int funk(int,float,char*);

These three functions have the same name, but different signatures. A signature represents a
function's name and its argument list, not the return type. Consider,

void funky(int);
int funky(int);

These two functions have the same signature and could not be defined in the same program
scope. In order to overload functions, they must have different signatures. Your compiler would
not allow this.

Furthermore, functions with default arguments do not constitute different signatures, even
though their function calls appear different. The functions

int flunk(int);
int flunk(int = 5);

may be called as: flunk(1) or flunk();
So, even though the function calls are unique, your compiler would disallow these definitions.

For overloaded functions, the compiler selects a function with the specified name and matching
the argument list according to a “best match” criteria. The “best match” is made using the
following order precedence:

1) exact matches or trivial conversions (array names to pointers, a type to a const type)

2) promotions - char to int, short to int, bool to int and float to double (not int to long)

3) standard conversions — “demotions” , integral types to floating types, floating to integral

4) user-defined conversion functions - constructors, conversion operators

5) ellipsis - similar to the way printf and scanf work with a variable number of arguments.

Example: void printf(...).

CIS27 - Programming in C++ 141

VI - Function and Operator Overloading

Example 6-1 - Function overloading — non-exact matches

This example demonstrates some function overloading and how the compiler handles non-exact
matches.

1 // File: ex6-1l.cpp - function overloading

2

3 #include <iostream>

4 4#include <cmath>

5 using namespace std;

6

7 class Circle

8 {

9 double radius;

10 public:

11 Circle (double r = 0) : radius(r) { }

12 static const double PI;

13 double getRadius () const

14 {

15 return radius;

16 }

17 };

18

19 class Rectangle

20 {

21 double length, width;

22 public:

23 Rectangle (double len, double wid) : length(len), width(wid) { }

24 double getLength () const

25 {

26 return length;

27 }

28 double getWidth () const

29 {

30 return width;

31 }

32 };

33

34 class Triangle

35 |

36 double a, b, c;

37 public:

38 Triangle (double argl, double arg2, double arg3) : a(argl),
b(arg2), c¢ (arg3) { }

39 double geta () const

40 {

41 return a;

42 }

43 double getb () const

44 {

45 return b;

46 }

CIS27 - Programming in C++ 142

VI - Function and Operator Overloading

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

double getc () const
{
return c;
}
double area () const;

}s

// Overloaded area function declarations
double area(const Circle& C);

double area(const Rectangle& R);

double area(const Triangle& T);

int main ()

{
Circle c¢(10.0);
Rectangle r(4.0,5.0);
Triangle t(3.0,4.0,5.0);

cout << "Circle c¢ has area " << area(c) << endl;
cout << "Rectangle r has area " << area(r) << endl;
cout << "Triangle t has area " << area(t) << endl;

}
const double Circle::PI = 3.1415926535897;

double Triangle::area() const

{
double s = .5 * (a + b + ¢);
return sqrt(s*(s-a)*(s-b)*(s-c));

double area(const Circle& C)

{
return Circle::PI * C.getRadius() * C.getRadius();

}

double area(const Rectangleé& R)

{
return R.getLength () * R.getWidth();

}

double area(const Triangle& T)

{

return T.areal():;

}

* kK kKK Output * kK kKK

Circle ¢ has area 314.159
Rectangle r has area 20

CIS27 - Programming in C++ 143

VI - Function and Operator Overloading

Triangle t has area 6

CIS27 - Programming in C++ 144

VI - Function and Operator Overloading

Example 6-2 - copyFile

This example makes use of function overloading. This purpose of this program is to build a
copyfile command that may be used at the operating system level. That is, it will emulate the
DOS copy command or the UNIX cp command. Following the example code are sample
command-line compile commands that demonstrate compilation and linking for the command-
line environment. The program also makes use of command-line arguments.

The program allows the user to:

1) copy one file to another

2) append one file to another

3) convert a file to uppercase

4) convert a file to lowercase

5) copy one file to another only if the target file does not exist

6) copy part of one file to another (from line# to line#)

7) copy part of one file to another (from line# to end of file)

8) copy part of one file to another (from beginning of file to line#)

// File: ex6-2.cpp - overloaded functions

#include <cctype>

#include <cstdlib>

#include <string>

#include <iostream>

#include <fstream>

#include <sstream> // for ostringstream
using namespace std;

O ~J oy O W N

e
= o

#ifdef GNUG // gnu compilers
#include <unistd.h>

#else // windows compilers
#include <io.h> // for access () function
#endif

P = = T = S
g oUW N

// Overloaded function prototypes

=
00

19 wvoid copyFile(const string& fnl, const stringé& fn2);

20 void copyFile(const stringé& fnl, const stringé& fn2, const stringé&
option);

21 void copyFile(const stringé& fnl, const stringé& fn2, const stringé
fromto, int lineno);

22 void copyFile (const stringé& fnl, const stringé& fn2, const stringé
from, int linel,

23 const stringé& to, int line2);

24

25 void errorMessage (const string& message) ;

26 void errorMessage (const stringé& message, const stringé& filename);

27

28 void displayCmdSyntax ()

29 |

CIS27 - Programming in C++ 145

VI - Function and Operator Overloading

30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

fprintf (stderr, "Usage:\n") ;
fprintf (stderr, "\tcopyFile <filel> <file2>\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -append\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -upper\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -lower\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -noreplace\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -from <line#> -to
<line#>\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -from <line#>\n");
fprintf (stderr, "\tcopyFile <filel> <file2> -to <line#>\n");
}
int main(int argc, char* argvl[])
{
if (argc<3 || *argv[l] == '?")
{
displayCmdSyntax () ;
exit (0);
}
switch (argc)
{
case 3:
copyFile (argv[l],argv([2]);
break;
case 4:
copyFile(argv[l],argv([2],argv[3]);
break;
case 5:
copyFile (argv[l],argv[2],argv([3],atoi(argv(4]));
break;
case 7:
copyFile (argv[l],argv([2],argv[3],atoi(argv(4]),
argv[5],atol(argv[6])):;
break;
default:
errorMessage ("Error: Invalid syntax\n");
}
printf ("Ok\n");
return 0;
}
// copies file fnl to file fn2
void copyFile(const stringé& fnl, const string& fn2)
{
char buffer[1024];
ifstream fin(fnl.c str());
ofstream fout (fn2.c str());
if (!fin) errorMessage ("Unable to open input file", fnl);;
if (!fout) errorMessage ("Unable to open input file", fn2);
while (fin.getline (buffer,sizeof (buffer))) fout << buffer <<
endl;

CIS27 - Programming in C++ 146

VI - Function and Operator Overloading

80
81
82

83

84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

}

// copies file fnl to file fn2 using append, upper,
noreplace

void copyFile (const string& fnl, const stringé& fn2,
option)

lower or

const stringé&

{
char buffer[1024];
// check for valid option
if (option == "-upper" || option =="-lower" || option =="-
append" || option =="-noreplace") /* keep going */ ;
else errorMessage ("Invalid option");
ifstream fin(fnl.c str());
ofstream fout;
if (!fin) errorMessage ("Unable to open input file", fnl);;
if (option == "-upper" || option =="-lower")
{
fout.open(fn2.c str());
if (!fout) errorMessage ("Unable to open input file", fn2);
}
// append option
if (option == "-append")
{
fout.open(fn2.c str(),ios base::app);
while (fin.getline (buffer,sizeof (buffer)))
{
fout << buffer << endl;
}
return;
}
// upper & lower case options
if (option=="-upper" || option=="-lower")
{
char ch;
while ((ch = fin.get()) != EOF)
{
if (option =="-upper") fout.put (toupper (ch));
else fout.put (tolower(ch));
}
}
// noreplace option
if (option == "-noreplace")
{
// check for the existance of file fn2
// Note: The access () function is non-ANSI, but available

on Borland/UNIX compilers
// MS compilers use _access

CIS27 - Programming in C++

147

VI - Function and Operator Overloading

127 if (access(fn2.c str(),0)==0) errorMessage ("Noreplace
error for output file",fnl);

128 else copyFile(fnl, fn2);

129 }

130 }

131

132 // copy part of fnl to fn2 (from linto or to lineno)
133 wvoid copyFile (const string& fnl, const stringé& fn2, const stringé
fromto, int lineno)

134 {

135 char buffer[10247];

136 ifstream fin(fnl.c str());

137 ofstream fout (fn2.c str());

138 if (!fin) errorMessage ("Unable to open input file", fnl);;

139 if (!fout) errorMessage ("Unable to open input file", fn2);

140

141 // copy "from" lineno to the end of file

142 if (fromto =="-from")

143 {

144 // read records up to "from"

145 for (int 1 = 1; i<lineno; i++)

146 {

147 fin.getline (buffer, sizeof (buffer));

148 if (!'fin.good()) // make sure the records
are read up to "from"

149 {

150 ostringstream sout;

151 sout << "Unable to read past record " << i;

152 errorMessage (sout.str());

153 }

154 }

155 // read the rest of the file & write it out

156 while (fin.getline (buffer,sizeof (buffer))) fout << buffer
<< endl;

157 }

158 else 1f (fromto =="-to")

159 {

160 // read records up to "to" & write them out

161 for (int 1 = 0; i<lineno; i++)

162 {

163 fin.getline (buffer,sizeof (buffer));

164 if (!fin.good()) // make sure the records
are read up to "from"

165 {

166 ostringstream sout;

167 sout << "Unable to read past record " << i;

168 errorMessage (sout.str());

169 }

170 fout << buffer << endl;

171 }

172 }

173 else errorMessage ("Invalid command syntax");

CIS27 - Programming in C++ 148

VI - Function and Operator Overloading

174 '}

175

176 wvoid copyFile(const stringé& fnl, const string& fn2, const stringé&
from, int linel,

177 const stringé& to, int line2)

178 {

179 char buffer[256];

180 int i;

181 // check the syntax

182 if (from != "-from"||to != "-to")

183 errorMessage ("Invalid from/to syntax\n");

184 if (linel>line2) errorMessage ("Invalid 'from' > 'to'\n");

185

186 ifstream fin(fnl.c str());

187 ofstream fout (fn2.c str());

188 if (!fin) errorMessage ("Unable to open input file", fnl);;

189 if (!fout) errorMessage ("Unable to open input file", fn2);

190

191 // read records up to "from" linel

192 for (i = 1; i<linel; i++)

193 {

194 fin.getline (buffer,sizeof (buffer));

195 if (!'fin.good()) // make sure the records are
read up to "from"

196 {

197 ostringstream sout;

198 sout << "Unable to read past record " << i;

199 errorMessage (sout.str());

200 }

201 }

202 for (i = linel; i<=line2; i++)

203 {

204 fin.getline (buffer,sizeof (buffer));

205 if (!'fin.good()) // make sure the records are
read up to "from"

206 {

207 ostringstream sout;

208 sout << "Unable to read past record " << i;

209 errorMessage (sout.str());

210 }

211

212 fout << buffer << endl;

213 }

214 }

215

216 void errorMessage (const string& msgqg)

217 {

218 cerr << msg << endl;

219 exit (-1);

220 }

221

222 void errorMessage (const string& message, const string& filename)

CIS27 - Programming in C++ 149

VI - Function and Operator Overloading

223 {

224 cerr << message << ' ' << filename << endl;
225 exit (-1);

226 }

Compile command for DOS using MS Visual Studio Express 2012:
cl ex6-2.cpp

Note: Before you can perform a command-line compile, you must run vcvars32.bat. This
program and the cl.exe for the command-line compile are found in the directory:
\Program Files\Microsoft Visual Studio 11.0\\VC\bin

Compile command for GNU (for UNIX/Linux) compiler:
g++ ex6-2.cpp -o cf
*xxxxk Sample Program Run x ok ok ok ko

C:\tdl24a>cf ?
Usage:
cf <filel> <file2>
cf <filel> <file2> -append
cf <filel> <file2> -upper
cf <filel> <file2> -lower
cf <filel> <file2> -noreplace
cf <filel> <file2> —-from <line#> -to <line#>
cf <filel> <file2> -from <line#>
cf <filel> <file2> -to <line#>

C:\tdl24a>cf ex6-2.inp ex6-2.out
Ok

C:\tdl24a>cf ex6-2.inp ex6-2.out -from 2 -to 3
Ok

C:\tdl24a>cf ex6-2.inp ex6-2.out -noreplace
Noreplace error for output file

C:\tdl24a>cf ex6-2.inp ex6-2.out -form 2 -to 3
Invalid from/to syntax

CIS27 - Programming in C++ 150

VI - Function and Operator Overloading

Operator Overloading

Operators in C++ may be overloaded in the same way that functions are overloaded. In C, the +
(plus) operator is "overloaded" to work for int or float values. In C++, this concept is extended
to include class types.

Notes:
e You may overload the following operators:

oot %n & |
~ 1 = < > <= >=

t+ - << >> == 1= && ||
+= 4+ [= Q= A= &= |: *=

<<= >>=[] () -> ->* new delete

e Most operators may be overloaded, both binary and unary operators. The following
operators may not be overloaded:
direct member
* direct pointer to member
scope resolution
?: ternary

e To overload an operator, create a function called operator@ where @ is the operator
symbol you wish to overload.

e Operator precedence is still in effect for overloaded operators and may not be changed.
e Default arguments are not allowed in overloaded operator functions.
e For an expression involving binary operators, A + B means:

A.operator+(B) if operator+() is a class member function

operator+(A,B) if operator+() is a non-class member function

e An overloaded operator function may be defined as a class member function, a friend
function, or even a non-friend function.

e You may not overload an operator (redefine) for the built-in primitive types. In other
words, if a and b are ints, then a+b will always be (int) a+b.

e You may not create any new operator symbols

CIS27 - Programming in C++ 151

VI - Function and Operator Overloading

Example 6-3 - Fraction class with overloaded + and ! operators

1 // File: ex6-3.cpp overloaded + and ! operator for fraction class
2

3 #include <iostream>

4 using namespace std;

5

6 class fraction

7 A

8 private:

9 int numer;

10 int denom;

11 public:

12 fraction(int n = 0, int d = 1);

13 void operator! (void) const;

14 fraction operator+ (const fractionég);

15 };

16

17 fraction::fraction(int n, int d)

18 {

19 numer = n;

20 denom = d;

21}

22

23 wvoid fraction: :operator! (void) const

24 |

25 cout << numer << '/' << denom << endl;

26 return;

27 }

28

29 fraction fraction::operator+(const fraction& £2)
30 {

31 fraction temp(0,0);

32 temp.numer = numer * f2.denom + f2.numer * denom;
33 temp.denom = denom * f2.denom;

34 return temp;

35 1}

36

37 int main(void)

38 {

39 fraction £(3,4);

40 fraction g(2,3);

41 fraction h = £ + g; // Do you need a default ctor here?
42 'h; // prints 17/12
43

44 return 0;

45 1}

v In this example operator+ returns a fraction by value. Is it possible or appropriate to have the
function return by reference or have a void return?

v Line 41: What is the difference between fraction h = f + g; and fraction h(f+g);

CIS27 - Programming in C++ 152

VI - Function and Operator Overloading

In this example, operator+ is defined as a friend function.

Example 6-4 - A friendly overloaded +

#include <iostream>
using namespace std;

1
2
3
4 class fraction {
5
6
7
8

private:
int numer, denom;
public:
fraction(int n = 0, int d = 1);
9 void operator! (void) const;
10 friend fraction operator+(const fractioné&,const fractiong) ;
11 };
12
13
14 fraction::fraction(int n, int d) {
15 numer = n;
16 denom = d;
17 }
18
19 void fraction: :operator! (void) const {
20 cout << numer << '/' << denom << endl;
21}
22

23 // fraction friend function
24 fraction operator+(const fraction& f1l,const fraction& £2) {

25 fraction temp (fl.numer *f2.denom + f2.numer * fl.denom,
26 fl.denom * f2.denom);
27 return temp;

28 }

29

30

31 int main(void) {

32 fraction £(3,4);

33 fraction g(2,3);

34 fraction h = £ + g;

35 'f£;

36 'g;

37 'h;

38 return 0;

39 }

KRk xKK Qubtput = KrEKHRX
3/4

2/3
17/12

¥ What’s the better approach, example 6-3 or example 6-4?

CIS27 - Programming in C++ 153

VI - Function and Operator Overloading

This example demonstrates a more "complete™ set of overloaded operators for the fraction class.
Notice that all operators are specified as member functions

Example 6-5 - The Overloaded fraction class

1 // File: ex6-5.cpp
2 #include <iostream>
3 #include <cassert>
4 using namespace std;
5

6

7

8

class fraction {
int numer, denom;

public:
9 fraction(int = 0, int = 1);
10 void operator! (void) const; // print the fraction
11 fraction& operator~ (void) ; // reduce the fraction
12 fraction operator-(void) const; // negative of fraction
13 fraction operator* (void) const; // reciprocal of fraction
14 fraction& operator+=(const fractioné&);
15 fraction& operator-=(const fractioné&);
16 fraction& operator*=(const fractioné&);
17 fraction& operator/=(const fraction&);
18 fraction operator+ (int) const;
19 fraction operator-(int) const;
20 fraction operator* (int) const;
21 fraction operator/ (int) const;
22 bool operator>(const fractioné&) const;
23 bool operator<(const fractioné&) const;
24 bool operator>=(const fractioné&) const;
25 bool operator<=(const fractioné&) const;
26 bool operator==(const fractioné&) const;
27 bool operator!=(const fractioné&) const;
28 fraction operator+ (const fractioné&) const;
29 fraction operator-(const fractioné&) const;
30 fraction operator* (const fractioné&) const;
31 fraction operator/ (const fraction&) const;
32 fraction& operator++(); // prefix op returns by ref
33 fraction operator++ (int) ; // postix op returns by value
34 };
35
36 // member function definitions
37 fraction::fraction(int n, int d) {
38 assert(d !'= 0);
39 numer = n;
40 denom = d;
41 }
42
43 // print the fraction
44 wvoid fraction: :operator! (void) const {
45 cout << numer << '/' << denom << endl;
46 '}
47

CIS27 - Programming in C++ 154

VI - Function and Operator Overloading

48 // reduce the fraction

49 fraction& fraction::operator~ (void) ({

50 1int min;

51 // find the minimum of the denom and numer

52 min = denom < numer ? denom : numer;

53 for (int 1 = 2; 1 <= min; 1i++) {

54 while ((numer % 1 == 0) && (denom % i == 0)) {
55 numer /= 1i;

56 denom /= 1i;

57 }

58 }

59 return *this;

60 }

6l

62 // negate the fraction

63 fraction fraction: :operator-(void) const {
64 return fraction (-numer, denom) ;

65 }

66

67 // fraction reciprocal

68 fraction fraction: :operator* (void) const {

69 return fraction (denom, numer);

70}

71

72 fraction& fraction::operator+=(const fraction& f) ({
73 numer = numer*f.denom+denom*f.numer;

74 denom = denom*f.denom;

75 return *this;

76 }

77

78 fraction& fraction::operator-=(const fraction& £f) {
79 *this += (-f);

80 return *this;

81 }

82

83 fraction& fraction::operator*=(const fraction& f) ({
84 numer = numer*f.numer;

85 denom = denom*f.denom;

86 return *this;

87 }

88

89 fraction& fraction::operator/=(const fraction& £f) {
90 *this *= (*f);

91 return *this;

92 1}

93

94 bool fraction::operator>(const fraction& f) const {
95 return (float) numer/denom > (float) f.numer/f.denom;
96 }

97

98 bool fraction: :operator<(const fraction& f) const {
99 return f>*this;

CIS27 - Programming in C++ 155

VI - Function and Operator Overloading

100 }

101

102 bool fraction::operator==(const fraction& f) const

103 return numer*f.denom == denom*f.numer;

104 }

105

106 bool fraction::operator!=(const fraction& f) const

107 return ! (*this == f);

108 }

109

110 bool fraction::operator<=(const fraction& f) const

111 return ! (*this > f);

112 }

113

114 bool fraction::operator>=(const fraction& f) const

115 return ! (*this<f);

116 }

117

118 fraction fraction::operator+(const fraction& f) const {
119 return fraction (numer*f.denom+denom*f.numer,denom*f.denom) ;
120 }

121

122 fraction fraction::operator-(const fraction& f) const {
123 return fraction (numer*f.denom-denom*f.numer, denom*f.denom) ;
124 }

125

126 fraction fraction::operator* (const fraction& f) const {
127 return fraction (numer*f.numer,denom*f.denom);

128 }

129

130 fraction fraction::operator/(const fraction& f) const {
131 return (*this) * (*f);

132 }

133

134 fraction fraction::operator+(int i) const {

135 return fraction (numer+i*denom,denom) ;

136 }

137

138 fraction fraction::operator-(int i) const {

139 return (*this) + -1i;

140 }

141

142 fraction fraction::operator* (int i) const {

143 return fraction (numer*i,denom) ;

144 }

145

146 fraction fraction::operator/(int i) const {

147 return fraction (numer, i*denom) ;

148 }

149

150 // prefix increment operator

151 fraction& fraction::operator++() {

CIS27 - Programming in C++ 156

VI - Function and Operator Overloading

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

numer += denom;
return *this;

}

// postfix increment operator
fraction fraction::operator++
fraction temp = *this;
++ (*this) ;
return temp;

}

int main (void)

{
fraction f£(3,4);
fraction g(1,2);

cout << "!If ", 'f£;

cout << "lg "; 'g;

cout << endl;

cout << "-g "; '-g;

cout << "*g "; '*g;
fraction h = g + f;

cout << endl;

cout << "h=g+f " << " 'h ";
cout << "!~h "; '~h;

cout << endl;

cout << "f+g "; ' (£ + g):;
cout << "f-g "; ' (£ - g);
cout << "f*g "; V(£ * qg);
cout << "f/g "; ! (f / qg);
cout << endl;

cout << "ft+=g "; !~ (f+=g);
cout << "f-=g "; !~ (f-=9g);
cout << "f*=g "; !~ (f*=qg);
cout << "f/=g "; !~(f/=qg);
cout << endl;

cout << "f<g " << (f<g) <<
cout << "f>g " << (f>g) <<
cout << "f==g " << (f==qg) <
cout << "fl=g " << (fl!=g) <
cout << "f<=g " << (f<=g) <
cout << "f>=g " << (f>=g) <
cout << endl;

cout << "f+4+5 "; ' (£45) ;
cout << "f-5 "; ' (£-5);
cout << "f*5 ", ' (£*5);
cout << "f/5 "; ' (£/5);
cout << endl;

cout << "f+=5 "; f+=5; cout
cout << "++f "; !++f; cout
cout << "f+4++ "; !f++4+; cout

(int) { // Note dummy int argument

// call the prefix operator

// initialize fraction f & g

endl;
endl;
< endl;
< endl;
< endl;
< endl;

<<
<<
<<

"I~f ", // What's this?
"f:H’. !f,‘

uf:n’. 'f,‘

I~f;

CIS27 - Programming in C++

157

VI - Function and Operator Overloading

204 return O;
205 }

CIS27 - Programming in C++ 158

VI - Function and Operator Overloading

* kK Kk kK Output * Kk Kk Kk kK

I'f 3/4
g 1/2

-g -1/2
*g 2/1

h=g+f 'h 10/8
I~h 5/4

frg 10/8
f-g 2/8
f*g 3/8
f/g 6/4

f+=g 5/4
f-=g 3/4
f*=g 3/8
f/=g 3/4

f<g 0
f>g 1
f==g 0
fl=g 1
f<=g 0
f>=g 1

£f+5 23/4
£f-5 -17/4
£*5 15/4
£/5 3/20

f+=5 !~f 23/4
++f 27/4
£f=27/4

f++ 27/4
f=31/4

Should any of these member functions be specified as friend functions?

Why do operator~ and unary operator- have different return types?

How do the increment operators work?

CIS27 - Programming in C++

159

VI - Function and Operator Overloading

Example 6-6 - "More power"

1 // File: ex6-6.cpp

2

3 #include <iostream>

4 #include <cstdlib>

5 #include <cmath>

6 using namespace std;

7

8 class Integer

9 |

10 private:

11 long x;

12 public:

13 Integer (long i) { x = i;}

14 long operator” (int);

15 };

16

17 long Integer: :operator” (int power)
18 {

19 if (power == 0) return 1;

20 long temp = x;

21 for (int 1 = 1; 1 < power; i++) temp *= x;
22 return temp;

23}

24

25

26 class Real

27 {

28 double d;

29 public:

30 Real (double arg) { d = arg;}

31 double operator” (double);

32 };

33

34 double Real: :operator” (double power)
35 {

36 if (d == 0 && power == 0)

37 {

38 cout << "0 ~ 0 is undefined\n";
39 exit (1);

40 }

41

42 if (d < 0 && power != floor (power))
43 {

44 cout <<

45 "You may only take integer powers of negative numbers\n";
46 exit (1);

47 }

48

49 return pow (d,power);

50 }

CIS27 - Programming in C++ 160

VI - Function and Operator Overloading

51 4int main (void)

52 {

53 Integer z(2), y(3);

54 cout << (z”5) << endl;

55 cout << (y"0) << endl;

56 Real rl1(3.14), r2(6.02e23),
57 cout<< (rl”2) << endl;

58 cout<< (r273) << endl;

59 cout<< (r370) << endl;

60 cout<< (rl 3.14) << endl;
61 Real r4(-1.4);

62 cout << (r4 3) << endl;
63 cout << (r471.3) << endl;
64

65 return 0;

66 }

1.2345);

* kK kKK Output * kK kKK

32

1

9.8596
2.18167e+71
1

36.3378
-2.744

You may only take integer powers of negative numbers

What if you want to evaluate an expression like nr?? Is this correct?

3.141592654*xr"2

CIS27 - Programming in C++

161

VI - Function and Operator Overloading

Unary vs Binary, Member vs.Non-Member

Only two types of overloaded operator functions may exist, unary or binary, and they may be
defined as member or non-member functions. So, there are only four ways to define these
functions. The following table summarizes these possibilities. Assume @ represents an
overloaded operator. There is, of course, no such operator available in C++.

Unary Operator Binary Operator
Member prototype
function ? operator@(); ? operator@(Arg);
Functional notation
call Argl.operator@() 2 Argl.operator@(Arg2)*
Infix notation call
@Arg1! Argl @ Arg2?
Non- prototype
member ? operator@(Argl); ! | ? operator@(Argl,Arg2);
function
Functional notation
call operator@(Arg1)* operator@(Argl,Arg2) 2
Infix notation call
@Argl !t Argl @ Arg2 ?

2 Arg1 would have to be a class object
3 Either Argl or Arg2 or both would have to be a class object

CIS27 - Programming in C++ 162

VI - Function and Operator Overloading

Example 6-7 - Matrix Arithmetic

The following example is an implementation of Matrix addition. It is meant to demonstrate the
overloaded + and = operators. This example also uses the this operator in member functions, so
that objects can be followed in the program using the program output.

1 // File: ex6-7.cpp

2

3 #include <iostream>

4 4#include <cstdlib>

5 using namespace std;

6

7 class Matrix

8 {

9 private:

10 int** element;

11 int rows;

12 int cols;

13 void alloc (void) ;

14 void release (void);

15 public:

16 Matrix (int = 0, int = 0); // also default constructor
17 Matrix (const Matrixé&); // copy constructor

18 ~Matrix ()

19 void print (void) const;

20 Matrix operator+(const Matrixé&) const;

21 Matrix& operator=(const Matrixé&);

22 };

23

24 Matrix::Matrix(int r, int c¢) : rows(r), cols(c)

25 |

26 cout << "Constructor called for object " << this <<endl;
27 alloc();

28

29 // initialize Matrix elements with random numbers 0-9
30 for (int 1 = 0; 1 < rows; i++)

31 for (int j = 0; j < cols; j++)

32 element[i] [j] = rand()%10;

33}

34

35 Matrix::Matrix (const Matrix& arg) : rows(arg.rows), cols(arg.cols)
36 {

37 cout << "\nIn copy constructor for object " << this;
38 cout << ", argument: " << &arg << endl;

39

40 alloc();

41 for (int 1 = 0; 1 < rows; i++)

42 for (int 7 = 0; J < cols; J++)

43 element[i] [J] = arg.element[i][]];

44)}

45

46 Matrix::~Matrix(void)

CIS27 - Programming in C++ 163

VI - Function and Operator Overloading

47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

vold Matrix::alloc (void)

cout << "\n~~ Destructor called for object: " << this << endl;

release () ;

cout << "Allocate heap memory for Matrix " << this << "

elements\n";

element = new int*[rows];
for (int 1 = 0; 1 < rows; i++)
element[1i] = new int[cols];

void Matrix::release (void)

cout << "I got rid of Matrix " << this << "'s elements\n";

for (int 1 = 0; 1 < rows; i++)
delete [] element[i];
delete [] element;

void Matrix::print(void) const

cout << "\nMatrix values for object: "<< this << endl;

for (int 1 = 0; 1 < rows; i++)
{
for (int j = 0; j < cols; j++)
cout << element[i][]j] << '"\t';
cout << endl;

Matrix Matrix::operator+ (const Matrixé& arg) const

cout << "\nExecuting operator+ for object: " << this;
cout << ", argument: " << &arg << endl;
if (rows != arg.rows || cols != arg.cols)

{
cerr << "Invalid Matrix addition\n";
return (*this);

}
Matrix temp (rows,cols);

for (int 1 = 0; 1 < rows; i++)
for (int j = 0; j < cols; j++)

CIS27 - Programming in C++ 164

// allocate heap memory for elements

VI - Function and Operator Overloading

98 temp.element[i] [jJ] = element[i] [j] + arg.element[i][]j];
99

100 temp.print () ;

101 return temp;

102 }

103

104 Matrix& Matrix::operator=(const Matrix& arg)
105 {

106 cout << "\nExecuting operator= for object: "
107 cout << ", argument: " << &arg << endl;
108

109 // Make sure rows and cols match the argument
110 if (rows != arg.rows || cols != arg.cols)
111 {

112 release () ;

113 rows = arg.rows;

114 cols = arg.cols;

115 alloc();

116 }

117

118 for (int i = 0; 1 < arg.rows; i++)

119 for (int 7 = 0; j < arg.cols; J++)

120 element[i] [J] = arg.element[i] []j];
121

122 return *this;

123}

124

125 1int main(void)

126 {

127 Matrix A(3,4), B(3,4), C;

128 A.print();

129 B.print () ;

130 C.print();

131 C =A + B;

132 C.print();

133 }

<< this;

*khkkkk O UTP UT *khkkkkx

Constructor called for object 0x28fee8
Allocate heap memory for Matrix 0x28fee8 elements
Constructor called for object 0x28fedc
Allocate heap memory for Matrix 0x28fedc elements
Constructor called for object 0x28fed0
Allocate heap memory for Matrix 0x28fed0 elements

Matrix values for object: 0x28feeS8

1 7 4 0
9 4 8 8
2 4 5 5

Matrix values for object: 0x28fedc

CIS27 - Programming in C++

VI - Function and Operator Overloading

1 7 1 1
5 2 7 6
1 4 2 3

Matrix values for object: 0x28fed0
Executing operator+ for object: 0x28fee8, argument: 0x28fedc
Constructor called for object 0x28fe3c

Allocate heap memory for Matrix 0x28fe3c elements

Matrix values for object: 0x28fe3c

2 14 5 1
14 6 15 14
3 8 7 8

In copy constructor for object 0x28fefd4d, argument: 0x28fe3c
Allocate heap memory for Matrix 0x28fef4d elements

~~ Destructor called for object: 0x28fe3c
I got rid of Matrix 0x28fe3c's elements

Executing operator= for object: 0x28fed0, argument: 0x28fef4
I got rid of Matrix 0x28fedO's elements

Allocate heap memory for Matrix 0x28fed0 elements

~~ Destructor called for object: 0x28fef4
I got rid of Matrix 0x28fefd4d's elements

Matrix values for object: 0x28fedl

2 14 5 1
14 6 15 14
3 8 7 8

~~ Destructor called for object: 0x28fedl
I got rid of Matrix 0x28fedO's elements

~~ Destructor called for object: 0x28fedc
I got rid of Matrix Ox28fedc's elements

~~ Destructor called for object: 0x28fee8
I got rid of Matrix 0x28fee8's elements

¥ How would you change the operator=() function so that you could assign a matrix with a
different number of rows or columns?

CIS27 - Programming in C++ 166

VI - Function and Operator Overloading

Is it a Copy Constructor or a Default Constructor and an Assignment Operator?

If you instantiate a class object x using an existing object y, such as,
Test x(y);

It is assumed that the copy constructor is called to perform the creation of the object. Further, if
you use the syntax,

Testx =vy;

Then, the same copy constructor is called. Is that correct, or is the default constructor called,
then the assignment operator? Consider the following example.

Example 6-7a - Copy Constructor or a Default Constructor and an Assignment Operator?

134 // File: Ex6-T7a.cpp -

135 // Copy Constructor or a Default Constructor and Assignment
Operator

136

137 #include <iostream>

138 using namespace std;

139

140 class Test

141 {

142 public:

143 Test () { cout << "default ctor: " << this << endl; }

144 Test (const Test& arg) { cout << "copy ctor: " << this << "
argument=" << g&arg << endl; }

145 Test& operator=(const Test& arg) { cout << "operator=: " << this
<< " argument=" << &arg << endl; return *this; }

146 Test operator+(const Test& arg) { cout << "operator+: " << this
<< " argument=" << &arg << endl; return *this; }

147 Test operator-(const Test& arg) { cout << "operator-: " << this
<< " argument=" << &arg << endl; Test temp; return temp; }

148 };

149

150 int main()

151 {

152 Test one;
153 Test two (one);

154 one = two;

155 Test three = one;

156 Test four = one + two;

157 Test five = one - two;

158 cout << "gfive=" << &five << endl;
159

160 return 0;

161 }

kkkkk Qutput Krkkk

CIS27 - Programming in C++ 167

VI - Function and Operator Overloading

MS Visual C++ 2008

default ctor: 002BFABB (19)
copy ctor: 002BFAAF argument=002BFABB (20)
operator=: 002BFABB argument=002BFAAF (21)
copy ctor: 002BFAA3 argument=002BFABB (22)
operator+: 002BFABB argument=002BFAAF (23)
copy ctor: 002BFA97 argument=002BFABB (23)
operator-: 002BFABB argument=002BFAAF (24/14)
default ctor: 002BF997 (14)
copy ctor: 002BFA8B argument=002BF997 (24)
&five=002BFASB (25)
g++ 4.4.0 on Linux

default ctor: Ox7fffd43edocftf (19)
copy ctor: O0x7fffd43ed6cfe argument=0x7fffd4d3edo6cff (20)
operator=: 0x7fffd4d3ed6cff argument=0x7fffd4d3edbcfe (21)
copy ctor: O0x7fffd43ed6cfd argument=0x7fffd43ed6cff (22)
operator+: 0x7fffd4d3ed6cff argument=0x7fffd4d3edbcfe (23)
copy ctor: O0x7fffd43ed6cfc argument=0x7fffd43ed6cff (23)
operator-: 0x7fffd43ed6cff argument=0x7fff43edbcfe (24/14)
default ctor: 0x7fff43edo6ctb (14)
&five=0x7fff43ed6cftb (25)

Comments

Line 19: default constructor call

Line 20: copy constructor call

Line 21: assignment operator call

Line 22: copy constructor call. Is this the answer to our question? Not yet, let’s look further.

Line 23: operator+ is called, then the copy constructor (same result on both compilers)

Line 24: Now here’s where it gets interesting. The call to operator-() invokes a default Test
constructor call in line 14. Then the MS compiler copies the temporary object using the
copy constructor, since the return is “by value”. The g++ compiler appears to by
“optimizing this onstructor call out”. So, it appear that th g++ compiler does not use the
copy compiler in this case to perform the “return by value” copy.

Line 25: This illustrates that the five object was created by the copy constructor for the MS
compiler and by the default constructor for the g++ compiler.

Who ever said this was going to be easy? Haven’t we got better things to do with our time?

CIS27 - Programming in C++ 168

VI - Function and Operator Overloading

Type Conversions

Operator overloading comes into play in converting one type to other. You already have
experience using two methods of conversions. First, you can use a cast to convert one primitive
type to another. The second method simply involves constructors. A non-default constructor
takes the arguments provided and creates a new-user defined object.

The next type of conversion to consider to converting a user-defined object into either a
primitive or another user-defined object. This is accomplished using an operator () function, as
illustrated in the next two examples.

Example 6-8 - Conversion of a user-defined type to a primitive type

1 // File: ex6-8.cpp

2 #include <iostream>

3 using namespace std;

4

5 class B {

6 int b;

7 public:

8 B(int i) : b (i) {}

9 operator int () const;

10 };

11

12 B::operator int() const {

13 cout << "* B:: operator int() called\n";
14 return b;

15 }

16

17 int main() {

18 B eight (8);

19 cout << eight << endl;

20 cout << eight + 5 << endl;
21 cout << 5 + eight << endl;
22 cout << (eight > 3) << endl;
23 return 0;

24 '}

kKK kKK Output XKk kKK

* B:: operator int () called
8

* B:: operator int () called
13

* B:: operator int () called
13

* B:: operator int () called
1

v What would happen if operator int() was not defined?

CIS27 - Programming in C++ 169

VI - Function and Operator Overloading

Example 6-9 - More Conversions of a user-defined type

O ~J o U w N

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

// File: ex6-9.cpp - More Type Conversions

#include <iostream>
#include <string>
using namespace std;

class Day; // forward declaration

class Number
{
int n;
public:
// Constructor
Number (int 1 = 0) : n(i) { cout << "Number (int) ctor called\n";

// Conversion operators
operator int() const;
operator Day() const;

};

Number: :operator int() const

{
cout << "* Number: :operator int() called\n";
return n;

}

const string Days[7] =
{"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"};

class Day
{
string dow;
public:
// Constructor
Day(int n = 0);

// Conversion operator
operator Number () const; // convert Day to Number

// loperator prints dow
void operator! () { cout << "dow = " << dow << endl; }
}i

Day::Day(int index)

o)

dow (Days[index % 71])
{

CIS27 - Programming in C++ 170

VI - Function and Operator Overloading

50 cout << "Day(int) ctor called\n";
51 1}

52 Day: :operator Number () const

53 {

54 cout << "** Day:: operator Number () called\n";
55 for (int i = 0; i < 7; i++) if (dow == Days[i]) return Number (i) ;
56 return Number (0) ;

57 '}

58

59 Number: :operator Day() const

60 {

61 cout << "* Number: :operator Day() called\n";
62 return Day(n) ;

63 }

64

65

66 int main()

67 {

68 Number N1 (65);

69 cout << "N1 = " << N1 << endl;
70

71 Day dl(1);

72 'dl;

73

74 // Day d2(N1); Why is this an ambiguity?
75

76 Number N2 (dl);

77 cout << "N2 = " << N2 << endl;
78

79 !Day (Number (dl) +2) ;

80

81 return 0;

82 }

kKK kKK Output kKK KKK

Number (int) ctor called

* Number::operator int () called
N1 = 65

Day (int) ctor called

dow = Monday

** Day:: operator Number () called
Number (int) ctor called

* Number::operator int () called
N2 =1

** Day:: operator Number () called
Number (int) ctor called

* Number::operator int () called
Day (int) ctor called

dow = Wednesday

CIS27 - Programming in C++ 171

VI - Function and Operator Overloading

Program Analysis

Line 8: Why is there a Day forward declaration?

Line 15: Describe the Number constructor.

Line 25: What are the options for a return from Number::operator int()?
Line 28: Why is Days const? How are the Days array elements created?
Line 48: Why “index % 7 ?

Line 56: Why is return Number(0) there? (Is it a good idea?)

Line 74: Why is this line commented out?

CIS27 - Programming in C++ 172

VII - Inheritance and Polymorphism

Inheritance and Polymorphism

Inheritance

Inheritance is a relationship between two classes such that one class takes on (inherits) the
properties and behaviors (types, data members and member functions) of another class. The
derived class inherits from a base class. This process facilitates code reuse and is a formal
method of expressing natural relationships between types.

A derived class may be the base for another class. Several classes may inherit from one class. A
derived class may inherit from several classes. Just like people! This is called multiple
inheritance.

The following example illustrates some of the basic inheritance concepts.

Example 7-1 - First inheritance example

1 // File: ex7-1.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 class Base

7 A

8 protected:

9 int b;

10 public:

11 Base (int n);

12 void print () const

13 {

14 cout << "Base data is " << b << endl;
15 }

16 };

17

18 Base::Base(int n) : b(n)

19 {

20 cout << "created Base object: " << this << endl;
21 }

22

23 class Derived : public Base
24 |

25 private:

26 int d;

27 public:

28 Derived(int x,int vy);
29 void print () const;

CIS27 - Programming in C++ 173

VII - Inheritance and Polymorphism

30 void printBase () const

31 {

32 cout << this << "'s Base 1s " << b << endl;

33 }

34 };

35

36 Derived::Derived(int x, int y) : Base(x), d(y)

37 {

38 cout << "created Derived object: " << this << endl;
39 1}

40

41 void Derived::print(void) const

42

43 cout << "Derived data is " << d << endl;

44 Base::print();

45 }

46

47 int main ()

48 {

49 Base bl (5);

50

51 // print base object

52 bl.print();

53 cout << endl;

54 Derived dl1(3,4);

55

56 // print derived object

57 dl.print () ;

58 cout << endl;

59

60 dl.printBase() ;

61

62 // call base class print() from derived class object
63 dl.Base::print();

64 cout << endl;

65

66 cout << "how big is an int? " << sizeof (int) << endl;
67 cout << "how big is a Base? " << sizeof bl << endl;
68 cout << "how big is a Derived? " << sizeof dl << endl;
69 }

kkkkkk Qutput Krkkkkk

created Base object: 0x69fefc
Base data is 5

created Base object: 0x69fef4
created Derived object: 0x69fefd
Derived data is 4

Base data is 3

0x69fefd's Base is 3

CIS27 - Programming in C++ 174

VII - Inheritance and Polymorphism

Base data is 3

how big is an int? 4
how big is a Base? 4
how big is a Derived? 8

CIS27 - Programming in C++ 175

VII - Inheritance and Polymorphism

Inheritance Notes

e The base class data members are usually protected. Thus, they may be accessible in the

derived class.

e Public inheritance is the most common type of inheritance. In public inheritance, the
protected base members are accessible and are also protected in the derived class. Also,
the public base members remain public in the derived class. In any type of inheritance,
private base members are not accessible in any “place” except in base class member
functions. Access in derived classes to the base members by inheritance type is
summarized in the following table:

Access to base class members in a derived class Base

Base Class Public Inheritance | Private Inheritance | Protected
Members Inheritance
Private not accessible not accessible not accessible
Protected protected private protected
Public public private protected

e The derived class constructor automatically makes a call to the base class constructor.
You can cause a certain base class constructor to be called by using constructor
initialization list syntax. If you don't, then the default base class constructor is called
(and it had better be there).

e The base class constructor executes before the derived class constructor, and the derived
destructor will execute before the base destructor.

e The derived class will use the accessible member functions of the base class unless it has
a function of the same signature.

e The following members are not inherited by the derived class:

constructors
destructors
friend functions

e Static data members may be inherited and hence, are shared among the base and derived
class objects, providing they have public or protected access. Further, static member
functions may also be inherited.

e Derived classes are also called subclasses, base classes are also called superclasses.

CIS27 - Programming in C++

176

VII - Inheritance and Polymorphism

Inheritance Examples

The following example illustrates a typical inheritance situation. Suppose you have a number
class in which addition with a plus sign is defined. This class works well, but you would also
like to be able to use it for subtraction. To do so, define your "own" class and inherit the number
class. Add a subtraction function to your class.

Example 7-2 - Adding functionality to a class using inheritance

1 // File: ex7-2.cpp - Adding functionality to a class using

inheritance
2
3 #include <iostream>
4 using namespace std;
5
6 class Number
7 A
8 protected:
9 int x;
10 public:
11 Number () {}
12 Number (int n) : x(n) { }
13 Number (const Numberé& n) : x(n.x) { }
14 int get x() const
15 {
16 return x;
17 }
18 Numberé& operator=(const Numberé& z)
19 {
20 X = Z.X;
21 return *this;
22 }
23 Number operator+ (const Numberé& y) const
24 {
25 return x + y.Xx;
26 }
27 };
28

29 ostreamé& operator<<(ostream& out, const Number& obj)
30 {

31 out << obj.get x();

32 return out;

33 1}

34

35 class MyNumber : public Number

36 {

37 public:

38 MyNumber () {}

39 MyNumber (int n) : Number (n) { }

40 MyNumber (const Number& n) : Number (n) {}
41 MyNumber (const MyNumber& m) : Number (m) {}

CIS27 - Programming in C++ 177

VII - Inheritance and Polymorphism

42 MyNumber operator-(const MyNumberé& y) const
43 {

44 return x - Vy.X;

45 }

46 };

47

48 int main (void)

49

50 Number nl(4), n2(5);

51 Number n3;

52 cout << "nl=" << nl << endl;
53 cout << "n2=" << n2 << endl;
54 n3 = nl + n2;

55 cout << "n3=" << n3 << endl;
56 cout << endl;

57

58 MyNumber mnl (7), mn2(4);

59 MyNumber mn3;

60 cout << "mnl=" << mnl << endl;
61 cout << "mn2=" << mn2 << endl;
62

63 mn3 = mnl + mn2;

64 cout << "mn3=" << mn3 << endl;
65

66 mn3 = mnl - mn2;

67 cout << "mn3=" << mn3 << endl;
68

69 MyNumber mn4 (nl) ;

70 cout << "mn4=" << mn4 << endl;
71

72 MyNumber mn5 (mnl) ;

73 cout << "mn5=" << mnb5 << endl;
74 }

kKK kKK Output kKK KKK

nl=4
n2=>5
n3=9

mnl="7
mn2=4
mn3=11
mn3=3
mn4=4
mnb5="7

¥ What is the purpose of the default constructors in both classes?

CIS27 - Programming in C++ 178

VII - Inheritance and Polymorphism

¥ How can the MyNumber copy constructor pass a MyNumber& to the Number copy
constructor?

¥ What is returned from the operator+ and operator- functions?

CIS27 - Programming in C++ 179

VII - Inheritance and Polymorphism

Example 7-3 - Inherit the deck class

1 // File: ex7-3.cpp - Inherit the deck class
2

3 #include <iostream>

4 #include <cstdlib>

5 using namespace std;

6

7 class Card

8

9 private:

10 int value;

11 int suit;

12 public:

13 Card(int n = 0);

14 Card(int wval, int s);

15 int get value() const

16 {

17 return value;

18 }

19 int get suit() const

20 {

21 return suit;

22 }

23 };

24

25 Card::Card(int n) : value(n % 13), suit(n / 13)
26 { }

27

28 Card::Card(int wval, int s) :value (val), suit(s)
29 {1}

30

31 ostreamé& operator<<(ostream& out, const Cardé& crd)
32 |

33 const string valueStr[13] =

34 {

35 "two", "three", "four","five", "six", "seven",

36 "eight", "nine", "ten", "jack", "queen", "king", "ace"

37 }i

38 const string suitStr[4] =
{"clubs","diamonds", "hearts", "spades"};

39 out << valueStr[crd.get value()] << " of " <<
suitStr[crd.get suit()];

40 return out;

41 }

42

43 class Deck

44

45 protected:

46 const int DeckSize;

47 Card* ptrCard;

48

49 public:

CIS27 - Programming in C++ 180

VII - Inheritance and Polymorphism

50 Deck (int = 0);

51 ~Deck () ;

52 Card* get ptrCard() const
53 {

54 return ptrCard;

55 }

56 int getDeckSize () const
57 {

58 return DeckSize;

59 }

60 void shuffle();

61 };

62

63 Deck::Deck(int n) : DeckSize (n), ptrCard(new Card[n])
64 { }

65

66 Deck::~Deck()

67 {

68 delete [] ptrCard;

69 ptrCard = nullptr;

70 }

71

72 ostreamé& operator<<(ostream& out, const Decké& deck)
73 {

74 for (int i = 0; i < deck.getDeckSize(); i++)
75 out << deck.get ptrCard() [i] << endl;
76 return out;

77 }

78

79 void Deck::shuffle()

80 {

81 cout << "I am shuffling the Deck\n";

82 Card temp;

83 for (int i = 0; 1 < DeckSize; i++)

84 {

85 int k = rand() % DeckSize;

86 temp = ptrCard[i];

87 ptrCard[i] = ptrCardl[k];

88 ptrCardl[k] temp;

89 }

90 }

91

92

93 class PokerDeck : public Deck

94 {

95 public:

96 PokerDeck () ;

97 };

98

99 PokerDeck: :PokerDeck () : Deck(52)

100 {

101 for (int i = 0; i < DeckSize; i++) ptrCard[i] = Card(i):;

CIS27 - Programming in C++

181

VII - Inheritance and Polymorphism

102 }

103

104 class PinocleDeck : public Deck

105 {

106 public:

107 PinocleDeck () ;

108 }s

109

110 PinocleDeck: :PinocleDeck () : Deck(48)

111 |

112 for (int i = 0; i < DeckSize; i++) ptrCard[i] =
Card (1%6+7,1/2%4) ;

113}

114

115 int main()

116 {

117 PokerDeck pokerD;

118 cout << "This is a poker deck\n" << pokerD << endl;

119 PinocleDeck pinocleD;

120 cout << "This 1is a pinocle deck\n"<< pinocleD << endl;

121 pokerD.shuffle();

122 pinocleD.shuffle ()

123 }

CIS27 - Programming in C++ 182

VII - Inheritance and Polymorphism

* kK Kk kK * Kk Kk Kk kK

Output

two of clubs <
three of clubs

four of clubs

five of clubs

six of clubs

seven of clubs

eight of clubs

queen of spades
king of spades
ace of spades

nine of clubs
ten of clubs
jack of diamonds
queen of diamonds
king of hearts
ace of hearts
nine of spades
ten of spades
jack of clubs
queen of clubs
king of diamonds
ace of diamonds
nine of hearts
ten of hearts

ace of diamonds
nine of hearts
ten of hearts
jack of spades
queen of spades
king of clubs
ace of clubs
nine of diamonds
ten of diamonds
jack of hearts
queen of hearts
king of spades
ace of spades

the poker deck starts here

the pinocle deck starts here

CIS27 - Programming in C++

183

VII - Inheritance and Polymorphism

Example 7-4 - Account classes

1 // File: ex7-4.cpp - Derive Savings and Checking from Account

2

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 class Account

8 {

9 protected:

10 unsigned long long accountNum;

11 double balance;

12 double intRate; // annual interest rate

13 public:

14 Account (unsigned long long num = 0,double bal = 0,double = 0);

15 void deposit (double amount) ;

16 void withdraw (double amount) ;

17 void month end();

18 friend ostreamé& operator<<(ostream& out, const Accounté&
account) ;

19 };

20

21 ostream& operator<<(ostream& out, const Accounté& account)
22 A

23 out << fixed << setprecision(2);

24 out << "Account: " << account.accountNum << " balance = $" <<
account.balance << endl;

25 return out;

26}

27

28 Account::Account (unsigned long long acc _no,double init bal,double
i rate)

29 : accountNum(acc no), balance(init bal), intRate (i rate)

30 {

31 cout << "* New Account\t";

32 cout << *this << endl;

33}

34

35 wvoid Account::deposit (double amount)

36 {

37 cout << "Account: " << accountNum << " deposit = $" << amount
<< endl;

38 balance += amount;

39 }

40

41 void Account::withdraw (double amount)

42 {

43 cout << "Account: " << accountNum << " withdraw = $" << amount
<< endl;

44 balance -= amount;

45 1}

CIS27 - Programming in C++ 184

VII - Inheritance and Polymorphism

46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84
85

86
87
88
89
90
91
92

void Account::month end()

{
cout << "Account month-end processing: " << accountNum << endl;
balance *= (l.+intRate/12.);
cout << *this << endl;

}

class SavingsAccount : public Account
{
public:
SavingsAccount (long acc no, double init bal = 50., double
i rate = .02)
Account (acc_no, init bal,i rate) { }

}i

class CheckingAccount : public Account
{
private:
double min balance;
double service charge;
public:
CheckingAccount (unsigned long long, double, double =
300.,double = 3.,double = .01);
void process check(double amt)
{
withdraw (amt) ;
}
void month end(void);

b

CheckingAccount: :CheckingAccount (unsigned long long acc no, double
init bal,
double min bal, double
service chg, double i rate)
Account (acc _no, init bal,i rate),
min balance (min bal),
service charge (service chg)

{1}

void CheckingAccount::month end()
{
cout << "Checking Account month-end processing: " << accountNum
<< endl;
balance *= (l.+intRate/12.);
if (balance < min balance) balance -= service charge;
cout << *this << endl;

}

int main ()

{

CIS27 - Programming in C++ 185

VII - Inheritance and Polymorphism

93 SavingsAccount Mysavings (1234560ULL, 500.) ;
94 CheckingAccount Mychecking (1234561ULL,1000.
95 Mysavings.deposit (100.);

96 cout << Mysavings << endl;

97 Mysavings.withdraw (200.) ;

98 cout << Mysavings << endl;

99 Mychecking.deposit (100.) ;

100 cout << Mysavings << endl;

101 Mychecking.process check(200.);

102 cout << Mychecking << endl;

103 Mysavings.month end();

104 Mychecking.month end();

105 }

* Kk Kk kKK Output * Kk Kk kKK

* New account account: 1234560 Dbalance = 500

* New account account: 1234561 Dbalance = 1000

account: 1234560 deposit = 100
account: 1234560 Dbalance 600

account: 1234560 withdraw = 200
account: 1234560 Dbalance = 400

account: 1234561 deposit = 100
account: 1234561 balance 1100

account: 1234561 withdraw = 200
account: 1234561 Dbalance = 900

account month-end processing: 1234560
account: 1234560 balance = 401.666656

checking account month-end processing: 1234561
account: 1234561 balance = 903

CIS27 - Programming in C++

186

VII - Inheritance and Polymorphism

Example 7-5 - Triangle classes
This example demonstates two levels of inheritance.

1 // File: ex7-5.cpp - Triangle classes

2

3 #include <iostream>

4 4#include <cmath>

5 using namespace std;

6

7 class Triangle

8 {

9 protected:

10 double a,b,c;

11 public:

12 Triangle (double sl1,double s2,double s3) : a(sl), b(s2), c(s3)
{}

13 double area()const;

14 double perimeter () const

15 {

16 return a + b + c;

17 }

18 friend ostreamé& operator<<(ostreamé&, const Triangle&);

19 };

20

21 double Triangle::area () const

22 {

23 double s = perimeter()/2.0; // s = semiperimater

24 return sqgrt(s*(s-a)*(s-b)*(s-c));

25 '}

26

27 ostream& operator<<(ostreamé& out, const Triangleé& triangle)
28 |

29 out << &triangle << ": sides "

30 << triangle.a << ' ' << triangle.b << ' ' << triangle.c;
31 return out;

32}

33

34 class Isosceles : public Triangle

35 {

36 public:

37 Isosceles (double base, double leg) : Triangle (base,leg,leg) {}
38 };

39

40 class Equilateral : public Isosceles

41 |

42 public:

43 Equilateral (double side) : Isosceles(side,side) {}
44 };

45

46

47 int main ()

48 |

49 Triangle t1(3,4,5);

CIS27 - Programming in C++ 187

VII - Inheritance and Polymorphism

50 cout << tl << endl;

51 cout << "perimeter=" << tl.perimeter () << " area=" <<
tl.area() << endl;

52

53 Isosceles t2(2,4);

54 cout << t2 << endl;

55 cout << "perimeter=" << t2.perimeter () << " area=" <<
t2.area() << endl;

56

57 Equilateral t3(5);

58 cout << t3 << endl;

59 cout << "perimeter=" << t3.perimeter () << " area=" <<
t3.area() << endl;

60

61 }

CIS27 - Programming in C++ 188

VII - Inheritance and Polymorphism

* kK Kk kK Output * Kk Kk Kk kK

Ox6afee8: sides 3 4 5
perimeter=12 area=6
Ox6afed0: sides 2 4 4
perimeter=10 area=3.87298
Ox6afeb8: sides 5 5 5
perimeter=15 area=10.8253

Private Inheritance

Private inheritance may be used to represent a “has-a” relationship between two classes.
(Fortunately) this type of inheritance is not all that common. Private inheritance is more
commonly replaced by containment, or a container relationship. Instead of a “has-a” relationship
between classes, private inheritance is more commonly used to express an “in terms of”
relationship. Here are some notes regarding private inheritance:

e Private inheritance is the default inheritance type, even though public inheritance is by far
the more common type of inheritance. This is what you get if you leave off the “public”
after the colon in the class definition.

e Private inheritance is used to indicate that one class “contains” another class, but the
containment is limited to exactly one instance of the base class.

e The (privately) derived class inherits the base class public and protected members, but
does not “pass them on”. That is, the derived class must provide it’s own public interface
to any base class members desired.

e Private inheritance is used when you want to make use of the base class, but you wish to
hide the base class public interface or you wish to provide your own public interface.
Example 7-6 — Private inheritance
The following example demonstrates private inheritance. The objective is to create a name class

that is defined in terms of the “standard” string class. To keep the class simple, the name class
has a simple user interface, thus hiding the complexity of the string class.

1 // Example 7-6 - private inheritance

#include <iostream>
#include <string>
using namespace std;

class name : private string

{
public:

O 0 1 o U b W N

CIS27 - Programming in C++ 189

VII - Inheritance and Polymorphism

10 name (const char *);

11 void print () const;

12 string first last() const;

13 string initials() const;

14 void change last (const string& new last);
15 };

16

17 name::name (const char* n) : string(n) {}

18

19 wvoid name::print () const {

20 cout << c_str() << ".\n";

21}

22

23 string name::first last() const {

24 size t comma pos = find(',"');

25 size t second space = find last of (' '");
26 return substr (comma pos+2Z, second space-comma pos—2) +
27 ' ' + substr(0,comma pos);

28 }

29

30 string name::initials () const {

31 string inits;

32 inits = data() [find (', ")+2];

33 return inits + data() [length()-1] + *data():;
34 }

35

36 void name::change last (const string& new last) {
37 replace (0, find (', ") ,new_last);

38 }

39

40 int main () {

41 name joe ("Bentley, Joseph E");

42 joe.print();

43 cout << joe.first last() << endl;

44 cout << joe.initials() << endl;

45 joe.change last ("Smith");

46 joe.print () ;

47 return 0;

48 '}

* kK kKK Output * kK kKK

Bentley, Joseph E.
Joseph Bentley
JEB

Smith, Joseph E.

CIS27 - Programming in C++ 190

VII - Inheritance and Polymorphism

Multiple Inheritance

Example 7-7 - First Multiple Inheritance Example

1 File: ex7-7.cpp — multiple inheritance

2

3 #include <iostream>

4 using namespace std;

5

6 class one {

7 protected:

8 int a,b;

9 public:

10 one (int z,int y) { a = z; b = y; }

11 volid show (void) const { cout << a << ' ' << b << endl; }
12 };

13

14 class two {

15 protected:

16 int c,d;

17 public:

18 two (int z,int y) { ¢ = z; d = vy; }

19 void show (void) const { cout << ¢ << ' ' << d << endl; }
20 };

21

22 class three : public one, public two

23 |

24 private:

25 int e;

26 public:

27 three (int, int, int, int, int) ;

28 void show(void) const

29 { cout <<a<< " " Kb« ' " <K< "' o <<Ld< " Y ek endl;}
30 };

31

32 three::three(int al, int a2, int a3, int a4, int ab5)

33 one (al,a2),two (a3, ad)

34 {

35 e = ab;

36}

37

38 int main(void)

39 {

40 one abc(5,7);

41 abc.show () ; // prints 5 7
42 two def (8,9);

43 def.show () ; // prints 8 9
44 three ghi(2,4,6,8,10);

45 ghi.show () ; // prints 2 4 6 8 10
46 return 0;

47 }

CIS27 - Programming in C++ 191

VII - Inheritance and Polymorphism

The next example illustrates a more complicated inheritance situation. It models the relationship
between types of quadrilaterals. This relationship is shown in the following figure:

quadrilateral

trapezoid parallelogram
isosceles_trapezoid rhombus rectangle
square

Note that the parallelogram class will be derived from the quadrilateral class, both the rhombus
and rectangle classes will be derived from the parallelogram class. And the square is derived
from both the rhombus and the rectangle classes. It's the square class that makes this multiple
inheritance.

Example 7-8 - Quadrilaterals

1 // File: ex7-8.cpp

2

3 #include <iostream>

4 4#include <cmath>

5 using namespace std;

6

7 class quadrilateral

8 |

9 protected:

10 double a,b,c,d;

11 public:

12 quadrilateral (double sl1,double s2,double s3,double s4)
13 a(sl), b(s2), c(s3), d(sd) {}

14 quadrilateral () {}

15 void show () const

16 {

17 cout << "quadrilateral: " << this << " sides "

18 << a << ' ' <Kphb<K< """ e <K " <« d <L endl;
19 }

20 };

CIS27 - Programming in C++ 192

VII - Inheritance and Polymorphism

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

class trapezoid : public quadrilateral
{
public:
trapezoid (double basel,double base2,double legl,double leg2)
quadrilateral (basel, legl,base2, leg2) {}
}i

class isosceles_trapezoid : public trapezoid
{
public:
isosceles trapezoid(double basel,double base2,double leg)
trapezoid(basel, leg,base2,leg) {}
}i

class parallelogram : public quadrilateral

{

protected:
int angle;
public:
parallelogram(double sl,double s2, int ang)
quadrilateral (sl,s2,sl1,s2) { angle = ang; }

parallelogram() { }
void show angles(void) const
{
cout << "angles = " << angle << ' ' << (180-angle) << endl;
}
}i

class rectangle : virtual public parallelogram
{
public:
rectangle (double base, double height)
parallelogram(base,height, 90) {}
rectangle () {}
}i

class rhombus: wvirtual public parallelogram

{

public:
rhombus (double side,int ang) : parallelogram(side,side,ang) {}
rhombus () {}

}s

class square : public rhombus,public rectangle
{
public:
square (double side) : parallelogram(side,side, 90) {}

b

CIS27 - Programming in C++ 193

VII - Inheritance and Polymorphism

69 int main (void)

70 |

71 quadrilateral gl(1,2,3,4);
72 gl.show () ;

73

74 trapezoid g2(22,13,8,15);
75 g2 .show () ;

76

77 isosceles trapezoid g3(18,8,13);
78 g3.show () ;

79

80 parallelogram g4 (4,3,45);
81 g4 .show () ;

82 g4.show _angles();

83

84 rectangle g5(4,3);

85 g5.show () ;
86 g5.show_angles();

87

88 rhombus g6 (5,45) ;
89 g6 .show () ;

90 g6.show angles();
91 cout << endl;

92

93 square g7 (5);

94 g’ .show () ;

95 q7.show _angles();
96

97 return 0;

98 }

kKK kKK Output kK kKKK

quadrilateral: 0x3dc9ffd6 sides 1 2 3 4
quadrilateral: 0x3dc9ffb6 sides 22 8 13 15
quadrilateral: 0x3dc9ff9%6 sides 18 8 13 13
quadrilateral: 0x3dc9ff74 sides 4 3 4 3
angles = 45 135

quadrilateral: 0x3dc9ff52 sides 4 3 4 3
angles = 90 90

quadrilateral: 0x3dc9ff2e sides 5 5 5 5
angles = 45 135

quadrilateral: 0x3dc9ffla sides 5 5 5 5
angles = 90 90

Note: The rectangle and rhombus classes both inherit the parallelogram class. Their inheritance
is designated virtual, so that if a class is derived from both of the them, the parallelogram data
will not be repeated in the class.

CIS27 - Programming in C++ 194

VII - Inheritance and Polymorphism

Polymorphism

Polymorphism is implemented when you have (a) derived class(es) containing a member
function with the same signature as a base class. A function invoked through a pointer or a
reference to the base class, will execute the correct implementation regardless of whether the
pointer is pointing at a base class object or a derived class object. Functions that behave in this
way are called virtual functions. The determination of which function to call is not known at
compile-time, so the correct function is selected during execution. This process is called late
binding, or dynamic binding. The usual call of a function through an object, is known to the
compiler, hence, early binding or static binding.

Non-virtual vs. Virtual Functions

Example 7-9 - Non virtual Functions

This example and the next one deomonstrate the difference between a virtual and a non-virtual
function.

1 // File: ex7-9.cpp - Inheritance with a non-virtual function
2

3 #include <iostream>

4 using namespace std;

5

6 class B

7 A

8 public:

9 B()

10 {

11 cout << "B ctor called for " << this << endl;

12 }

13 void funkl ()

14 {

15 cout << "B::funkl () called for " << this << endl;
16 }

17 void funk2 ()

18 {

19 cout << "B::funk2 () called for " << this << endl;
20 }

21}

22

23 class D : public B

24 {

25 public:

26 D()

27 {

28 cout << "D ctor called for " << this << endl;

29 }

30 // Override funkl ()

CIS27 - Programming in C++ 195

VII - Inheritance and Polymorphism

31 void funkl ()
32 {

33 cout << "D::funkl () called for " << this << endl;
34 }

35 };

36

37 1nt main ()

38 {

39 B b;

40 D d;

41 cout << endl;
42

43 b.funkl () ;

44 d.funkl () ;

45 cout << endl;
46

47 b.funk2 () ;

48 d.funk2 () ;

49 cout << endl;
50

51 B* pB;

52 PB = &b;

53 pB->funkl () ;
54 cout << endl;
55

56 pB = &d;

57 pB->funkl () ;
58 cout << endl;
59

60 cout << "size of b = " << sizeof b << endl;
61 cout << "size of d = " << sizeof d << endl;
62 }

* kK kKK Output * kK kKK

B ctor called for 0x69fefb
ctor called for 0x69fefa
ctor called for 0x69fefa

o

[os]

::funkl () called for 0x69fefb
D::funkl () called for 0x69fefa

B::funk2 () called for 0x69fefb
B::funk2 () called for 0x69fefa

B::funkl () called for 0x69fefb
B::funkl () called for 0x69fefa

size of b =1
size of d =1

¥ Why does a B and a D object have a size of 1?

CIS27 - Programming in C++

196

VII - Inheritance and Polymorphism

CIS27 - Programming in C++ 197

VII - Inheritance and Polymorphism

Example 7-10 - Virtual Functions

This example is the same as the last one, except that funkl1() is declared a virtual function.
Hence, this program implements polymorphism.

O 0 J o O b w N

11

12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// File: ex7-10.cpp - Inheritance with a virtual function

#include <iostream>
using namespace std;

class B
{
public:

B() { cout << "B ctor called for " << this << endl;}

void funkl () { cout << "B::funkl() called for " << this << endl;
}

virtual void funk2 () { cout << "B::funk2() called for " << this
<< endl; }

};

class D : public B
{
public:
D() { cout << "D ctor called for " << this << endl;}
void funkl () { cout << "D::funkl() called for " << this << endl;
}
virtual void funk2 () { cout << "D::funk2() called for " << this
<< endl; }
}i

int main ()
{
B b;
D d;
cout << endl;

b.funkl () ;
d.funkl () ;
cout << endl;

b.funk2 () ;
d.funk2 () ;
cout << endl;

B* pB;

pB = &b;
pB->funkl () ;
pB->funk2 () ;
cout << endl;

pPB = &d;
pB->funkl () ;

CIS27 - Programming in C++ 198

VII - Inheritance and Polymorphism

44 pB->funk2 () ;

45

46 cout << endl;

47

48 cout << "size of b = " << sizeof b << endl;
49 cout << "size of d = " << sizeof d << endl;
50 }

* Kk Kk k kK Output * kK kKK

B ctor called for 0x69fef8
ctor called for 0x69fefd
ctor called for 0x69fef4

o w

B::funkl () called for 0x69fef8
D::funkl () called for 0x69fef4d

B::funk2 () called for 0x69fef8
D::funk2 () called for 0x069fef4d

B::funkl () called for 0x69fef8
B::funk2 () called for 0x69fef8

B::funkl () called for 0x69fef4
D::funk2 () called for 0x69fef4

size of b = 4
size of d = 4

CIS27 - Programming in C++ 199

VII - Inheritance and Polymorphism

Example 7-11 - Virtual Functions

This example illustrates that

1) avirtual function does not have to be overridden in the derived class and

2) also that you may not execute a derived class function that is not defined in the base class
through a base class pointer even if the pointer is pointing at a derived class object.

1 // File: ex7-11.cpp

2

3 #include <iostream>

4 using namespace std;

5

6 class B

7 A

8 protected:

9 int b;

10 public:

11 B()

12 {

13 cout << "B ctor called for " << this << endl;

14 b = 0;

15 }

16 virtual void virt ()

17 {

18 cout << "B::virt() called for " << this << endl;

19 }

20 };

21

22 class D : public B

23 |

24 protected:

25 int d;

26 public:

27 D ()

28 {

29 cout << "D ctor called for " << this << endl;

30 d = 0;

31 }

32 void non virt2()

33 {

34 cout << "D::non virt2() called for " << this << endl;

35 }

36}

37

38 int main ()

39 |

40 B b; // declare a base object

41 D d; // declare a derived object

42

43 b.virt(); // invoke virt () through a base object

44 d.virt () ; // invoke virt () through a derived object

45

46 B* pb; // pb is a pointer to a base class object

CIS27 - Programming in C++ 200

VII - Inheritance and Polymorphism

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

pb = &b; // pb points to b

pb->virt () ; // invoke virt () through a base pointer
// to a base object

pb = &d; // pb points to d
pb->virt () ; // invoke virt () through a base pointer
// to a derived object

cout << "size of b = " << sizeof b << endl;

cout << "size of d = " << sizeof d << endl;

d.non _virt2(); // invoke non virt2() through derived object
// pb->non virt2(); Error: non virt2() is not a member of B

Kk kK Kk kK Output * kK kKK

0w woww

B:

ctor called for 0x69fef4
ctor called for 0x69feeS8
ctor called for 0x69feeS8
:virt () called for 0x69fefd
:virt () called for 0x69fee8
:virt () called for 0x69fefd
:virt () called for 0x69fee8

size of b = 8
size of d = 12

D:

:non_virt2() called for 0x69fee8

Example 7-12 - Virtual Functions

This example shows that

1)

2)

"virtualness" is passed down to derived classes even if the immediate "parent™ class does not
name a function as virtual and
polymorphism may be implemented through references instead of pointers to base objects.

N

= P O 00 J o

0
1

// File: ex7-12.cpp

// This example shows that "virtualness" is passed down to derived
classes

// even if the immediate "parent" class does not name a function as
virtual.

// It also illustrates polymorphism implemented through references
instead

// of pointers to base objects.

#include <iostream>
#include <string>
using namespace std;

CIS27 - Programming in C++ 201

VII - Inheritance and Polymorphism

12 class person

13 {

14 public:

15 virtual string who am i() const

16 {

17 return "person";

18 }

19 string non virtual who am 1i() const
20 {

21 return "non virtual person";

22 }

23 };

24

25 <class child : public person

26 |

27 public:

28 string who am 1i() const

29 {

30 return "child";

31 }

32 string non virtual who am 1i() const
33 {

34 return "non virtual child";

35 }

36)i

37 class grand child : public child

38 |

39 public:

40 string who am 1i() const

41 {

42 return "grand child";

43 }

44 string non virtual who am 1i() const
45 {

46 return "non virtual grand child";
47 }

48 };

49

50 wvoid identify yourself (const person& p)
51 |

52 cout << "I am a " << (p.who am 1i()) << endl;
53 cout << "I am a " << (p.non _virtual who am i()) << endl;
54 '}

55

56 int main ()

57 |

58 person P;

59 child C;

60 grand child G;

61 person* pp;

62 pp = &P;

63 cout << (pp->who am i()) << endl;

CIS27 - Programming in C++ 202

VII - Inheritance and Polymorphism

64 cout << (pp->non virtual who am i()) << endl;

65 pp = &C;

66 cout << (pp->who _am i()) << endl;

67 cout << (pp->non virtual who am i()) << endl;

68 pp = &G;

69 cout << (pp->who am i()) << endl;

70 cout << (pp->non virtual who am i()) << endl;

71 cout << "sizeof (person) " << sizeof (person) << endl;

72 cout << "sizeof (child) << sizeof(child) << endl;

73 cout << "sizeof (grand child) " << sizeof (grand child) <<
endl;

74 identify yourself (P);

75 identify yourself (C);

76 identify yourself (G);

77}

kKK KKK Output kKK KKK

person
non _virtual person
child

non virtual person
grand child

non virtual person

sizeof (person) = 4
sizeof (child) = 4
sizeof (grand child) = 4

I am a person

I am a non virtual person
I am a child

I am a non virtual person
I am a grand child

I am a non virtual person

CIS27 - Programming in C++

203

VII - Inheritance and Polymorphism

Why write a Virtual destructor?

Example 7-13
This example illustrates why you might want to write a virtual destructor.

// File: ex7-13.cpp - Why a Virtual destructor?

#include <iostream>
using namespace std;

class X

{

public:
X ()
{

O ~J o O W DN

e
)

cout << "X constructor called\n";

= e
w N
—

~X ()
{

—
S

cout << "X destructor called\n";

e
oy Ul

}

J—
~J

}i

N P
o v

class A : public X

{
public:

A()
{

DD DN
a s w N

cout << "A constructor called\n";

NN
~ o
—

~A ()
{

N
00

cout << "A destructor called\n";

w N
[@2Ne}

}

w W W Ww
Sw N
—
~

int main ()

w W
o U1
—_~

X* ptrX;

w W
o0

ptrX = new X;
delete ptrX;

DO W
= O ©

cout << endl;

IS
w N

ptrX = new A;
delete ptrX;

DS
a1
—

CIS27 - Programming in C++ 204

VII - Inheritance and Polymorphism

* kK Kk kK Output * Kk Kk Kk kK

X constructor called
X destructor called

constructor called
constructor called
destructor called

XX

¥ What’s the problem?

CIS27 - Programming in C++ 205

VII - Inheritance and Polymorphism

Example 7-14
This example shows how to write a virtual destructor. Compare the output with the last example.

1 // File: ex7-14.cpp - Why a Virtual destructor? Here’s why!
2

3 #include <iostream>

4 using namespace std;

5

6

7 class X

8 |

9 public:

10 X ()

11 {

12 cout << "X constructor called\n";
13 }

14 virtual ~X ()

15 {

16 cout << "X destructor called\n";
17 }

18 };

19

20

21 class A : public X

22 {

23 public:

24 A()

25 {

26 cout << "A constructor called\n";
27 }

28 ~A ()

29 {

30 cout << "A destructor called\n";
31 }

32 };

33

34

35 int main ()

36 {

37 X* ptrX;

38

39 ptrX = new X;

40 delete ptrX;

41

42 cout << endl;

43

44 ptrX = new A;

45 delete ptrX;

46 '}

* Kk Kk kKK Output * kK kKK

CIS27 - Programming in C++ 206

VII - Inheritance and Polymorphism

>

constructor called
destructor called

>

constructor called
constructor called
destructor called
destructor called

X X

Note: it is not necessary to repeat the virtual for the destructor in the derived class.

CIS27 - Programming in C++ 207

VII - Inheritance and Polymorphism

Non-Virtual, Virtual, and Pure Virtual Functions

The following notes differentiate these three types of class member functions:

Non-Virtual

e This is the default type of class member function. The keyword virtual does not appear
in the function prototype.

¢ Non-virtual functions, as a rule, are not usually overridden in the derived class.

Virtual

e The keyword virtual appears at the beginning of the function prototype in the base class.
It doesn’t have to be used in derived class function prototypes, but it’s not a bad idea to
use it.

e Virtual functions, as a rule, are usually overridden in the derived class.

e Virtual functions make polymorphism possible.

Pure Virtual

e The keyword virtual appears at the beginning and =0 at the end of the function
prototype in the base class. The =0 is not repeated in derived classes unless that class is
intended to serve as a base class for other derived classes.

e Pure virtual functions must be overridden in the derived class, unless, that class is also a
base class for other classes.

e Pure virtual functions are not defined in the class in which they are declared as pure
vitual.

e The presence of a pure virtual function in a class makes it an abstract class. Abstract
classes may not be instantiated.

CIS27 - Programming in C++ 208

VII - Inheritance and Polymorphism

Abstract Classes and Pure Virtual Functions

The following example is the traditional shape class example, illustrating the abstract base class,
shape, with pure vitual functions.

Example 7-15 - Abstract classes and pure virtual functions

// File: ex7-15.cpp - Abstract classes

#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;

o J oy U W DN

const double pi = 3.141592654;

e

10 class Shape

11 {

12 protected:

13 double x;

14 double vy;

15 public:

16 Shape (double = 0,double = 0);

17 double get x() const

18 {

19 return x;

20 }

21 double get y () const

22 {

23 return y;

24 }

25 virtual double area () const = 0; // pure virtual function
26 virtual double girth() const = 0; // pure virtual function
27 };

28

29 Shape::Shape (double ¢ x, double c y) : x(c x),y(c y) {}

30

31 ostreamé& operator<<(ostream& out, const Shape& object)
32 {

33 cout << '(' << object.get x() << ',' << object.get y() << ")'";
34 return out;

35 }

36

37 <class Square : public Shape

38 {

39 private:

40 double side;

41 public:

42 Square (double ¢ x,double c_ y, double s);
43 double get side()

44 {

CIS27 - Programming in C++ 209

VII - Inheritance and Polymorphism

45 return side;

46 }

47 double area () const;

48 double girth() const;

49 };

50

51 Square::Square (double c x, double c y, double s) Shape (c_x,c_ vy),
side (s)

52 { }

53

54 double Square::area() const

55 {

56 return side * side;

57 }

58

59 double Square::girth () const

60 |

61 return 4.*side;

62 }

63

64 class Triangle public Shape

65 {

66 private:

67 double a,b,c; // length of 3 sides

68 public:

69 Triangle (double c x,double ¢ y, double sl, double s2, double
s3);

70 void print sides();

71 double area () const;

72 double girth() const;

73}

74

75 Triangle::Triangle(double c x, double c y, double sl, double sZ,
double s3)

76 : Shape(c x,c y), a(sl), b(s2), c(s3)

77 { }

78

79 wvoid Triangle::print sides()

80 {

81 cout << a << ' ' << b << " " K ¢;

82 }

83

84 double Triangle::area() const

85 {

86 double s = (a + b +¢c) / 2.; // semiperimeter

87 return sqrt(s*(s—-a)*(s-b)*(s-c));

88 }

89

90 double Triangle::girth() const

91 {

92 return a+tb+c;

93 }

CIS27 - Programming in C++ 210

VII - Inheritance and Polymorphism

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

class Circle : public Shape
{
private:
double radius;
public:
Circle (double c x, double c y, double r);
double get radius()
{
return radius;
}
double area () const;
double girth() const;
}i

Circle::Circle(double c x, double c y, double r)

radius (r)

{1}

double Circle::area () const

{

return pi*radius*radius;

double Circle::girth() const
{

return 2.*pi*radius;

int main ()

{

Shape(c_x,c y),

// Shape sh(6,7); can't create instance of abstract class

Circle c(3,4,5);

cout << "Circle c¢ - center: ";

cout << ¢ << endl;

cout << " radius = " << c.get radius();

cout << " area = " << c.areal();

cout << " circumference = " << c.girth() << endl;

Square s(5.,2.,1.);

cout << "Square s - center: ";

cout << s << endl;

cout << " side = " << s.get side();

cout << " area = " << s.areal();

cout << " perimeter = " << s.girth() << endl;

Triangle t(0,0,3,4,5);

cout << "Triangle t - center: ";
cout << t << endl;

cout << " sides = ";

t.print sides();

cout << " area = " << t.areal();

CIS27 - Programming in C++

211

VII - Inheritance and Polymorphism

145 cout << " perimeter = " << t.girth() << endl;

146

147 cout << "sizeof (double)=" << sizeof (double) << endl;

148 cout << "sizeof (Shape)=" << sizeof (Shape) << endl;

149 cout << "sizeof (Square)=" << sizeof (Square) << endl;

150 cout << "sizeof (Triangle)=" << sizeof (Triangle) << endl;
151 cout << "sizeof (Circle)=" << sizeof (Circle) << endl;

152 }

* kK Kk kK Output * kK Kk kK

circle ¢ - center: (3,4) radius = 5 area = 78.5398 circumference = 31.4159
square s - center: (5,2) side = 1 area = 1 perimeter = 4
triangle t - center: (0,0) sides = 3 4 5 area = 6 perimeter = 12

sizeof (double) =8
sizeof (shape)=24
sizeof (square) =32
sizeof (triangle) =48
sizeof (circle)=32

CIS27 - Programming in C++ 212

VII - Inheritance and Polymorphism

Example 7-16 - Life
The following example is a practical application which make use of polymorphism and an
abstract class.

1 // File: ex7-16.cpp - Life and polymorphism
2

3 #include <iostream>

4 #include <cstdlib>

5 using namespace std;

6

7 enum Bool { FALSE, TRUE};

8 enum LifeForm {VACANT, WEED, RABBIT, HAWK};
9

10 const int GridSize = 10;

11 const int Cycles = 10;

12 const int NumberLifeForms = 4;

13 const int HawkLifeExpectancy = 8;
14 const int HawkOvercrowdingLimit = 3;
15 const int RabbitLifeExpectancy = 3;

16

17 class Grid;

18

19 class LivingThing

20 {

21 protected:

22 int x,vy;

23 void AssessNeighborhood (const Gridé& G, int sml[]);
24 public:

25 LivingThing(int x, int y): x(x), yv(vy) {}
26 virtual ~LivingThing() {}

27 virtual LifeForm WhoAmI () const = 0;

28 virtual LivingThing* next (const Gridé& G) = 0;
29 };

30

31 class Grid

32 {

33 private:

34 LivingThing* cell[GridSize] [GridSize];

35 public:

36 Grid();

37 ~Grid()

38 {

39 if (cell[1l][1]) release():

40 }

41 void update (Gridé&) ;

42 void release () ;

43 void print () ;

44 LivingThing* get cell (int row, int col) const;
45 };

46

47 /* This function counts the number of each LivingThing thing in
48 the neighborhood. A neighborhood is a square and the 8

CIS27 - Programming in C++ 213

VII - Inheritance and Polymorphism

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

adjacent squares on each side of it */
void LivingThing: :AssessNeighborhood (const Grid& G, int count[])

{

int i, 3;

count [VACANT] = count[WEED] = count[RABBIT] = count[HAWK] = 0;
for (1 = -1; 1 <= 1; ++1)
for (3 = -1; j <= 1; ++3)

count [G.get cell(x+i,y+]j) —-> WhoAmI ()]++;
}

LivingThing* Grid::get cell(int row, int col) const
{

return cell[row] [col];

}

class Vacant : public LivingThing

{

public:
Vacant (int x, int y):LivingThing(x, y) {}
LifeForm WhoAmI () const

{
return (VACANT) ;

}
LivingThing* next (const Grid& G);

}i

class Weed : public LivingThing
{

public:
Weed (int x, int y): LivingThing(x, y) {}
LifeForm WhoAmI () const

{
return (WEED);

}
LivingThing* next (const Grid& G);

}s

class Rabbit : public LivingThing
{

protected:
int age;

public:
Rabbit (int x, int y, int a = 0) : LivingThing(x,vy), age(a) {}
LifeForm WhoAmI () const

{
return (RABBIT);

}
LivingThing* next (const Gridé& G);

}s

class Hawk : public LivingThing
{

CIS27 - Programming in C++ 214

VII - Inheritance and Polymorphism

101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

protected:
int age;

public:
Hawk (int x, int y, int a = 0): LivingThing(x,y), age(a) {}
LifeForm WhoAmI () const

{
return (HAWK) ;

}
LivingThing* next (const Gridé& G);

}i

// This function determines what will be in an Vacant square in

the next cycle

LivingThing* Vacant::next (const Grid& G)

{
int count[NumberLifeForms];
AssessNeighborhood (G, count) ;

// If there is more than one Rabbit in the neighborhood, a new

Rabbit

// is born.
if (count [RABBIT] > 1) return (new Rabbit(x,y));

// otherwise, if there is more than one Hawk, a Hawk will be born
else if (count[HAWK] > 1) return (new Hawk(x, y));

// otherwise, 1f there is Weed in the neighborhood, Weed will grow

else if (count[WEED]) return (new Weed(x, Vy)):;

// otherwise the square will remain Vacant
else return (new Vacant(x, vy));

}

// 1if there is more Weeds than Rabbits, then new Weed will grow,
// otherwise Vacant
LivingThing* Weed::next (const Grid& G)
{
int count[NumberLifeForms];
AssessNeighborhood (G, count);
if (count [WEED] > count [RABBIT]) return (new Weed(x, Vv));
else return (new Vacant(x, vy));

}

/* The Rabbit dies if:

there's more Hawks in the neighborhood than Rabbits

not enough to eat

or if it's too old

otherwise a new Rabbit is born */

LivingThing* Rabbit::next (const Grid& G)

{
int count[NumberLifeForms];
AssessNeighborhood (G, count);

CIS27 - Programming in C++ 215

VII - Inheritance and Polymorphism

151 if (count [HAWK] >= count[RABBIT]) return (new Vacant(x, Vy));

152 else if (count[RABBIT] > count[WEED]) return (new Vacant (x,
y))

153 else if (age > RabbitLifeExpectancy) return (new Vacant (x,
v))

154 else return (new Rabbit(x,y, age + 1));

155 }

156

157 // Hawk die of overcrowding, starvation, or old age

158 LivingThing* Hawk::next (const Gridé& G)

159 {

160 int count [NumberLifeForms];

161l AssessNeighborhood (G, count);

162 if (count [HAWK] > HawkOvercrowdingLimit) return (new Vacant (x,
y))

163 else if (count[RABBIT] < 1) return (new Vacant(x,vy)):;

164 else 1f (age > HawkLifeExpectancy) return (new Vacant (x, Vy));

165 else return (new Hawk(x, y, age + 1));

166 }

167

168 Grid::Grid()

169 {

170 LifeForm creature;

171 int 1, J;

172 for (i = 0; 1 < GridSize; i++)

173 for (j = 0; 7 < GridSize; j++)

174 {

175 if (i == 0 || i == GridSize - 1 || § ==0 || § ==
GridSize - 1)

176 creature = VACANT;

177 else

178 creature = LifeForm(rand() % NumberLifeForms)

179 switch (creature)

180 {

181 case HAWK:

182 cell[i][]j] = new Hawk(i,Jj);

183 break;

184 case RABBIT:

185 cell[i][]j] = new Rabbit(i,Jj):

186 break;

187 case WEED:

188 cell[i] [j] = new Weed(i,]);

189 break;

190 case VACANT:

191 cell[i][]j] = new Vacant(i,3j):;

192 }

193 }

194 '}

195

196 void Grid::release()

197 |

198 int 1, J;

CIS27 - Programming in C++

216

VII - Inheritance and Polymorphism

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

for (i = 1; 1 < GridSize - 1; ++i)
for (j = 1; 7 < GridSize - 1; ++7j) delete cell[i]l[3j];
cell[1l][1] = 0;
}

void Grid::update (Gridé& old)
{
int 1, J;
for (1 = 1; 1 < GridSize - 1; ++i)
for (3 = 1; j < GridSize - 1; ++73)
cell[i][]j] = old.cell[i][]j] -> next(old);
}

void Grid::print ()
{
LifeForm creature;
int i, 7j;
for (i = 1; 1 < GridSize - 1; 1i++)
{
for (j = 1; 7 < GridSize - 1; J++)
{
creature = cell[i] [jJ]->WhoAmT () ;
switch (creature)
{
case HAWK:
cout << "H";
break;
case RABBIT:
cout << "R";
break;
case WEED:
cout << "W";
break;
case VACANT:
cout << "0";
}
}
cout << endl;
}
cout << endl;

}

int main ()

{
Grid G1, G2;
Gl.print () ;

for (int i = 1; i <= Cycles; i++)
{
cout << "Cycle " << i << endl;
if (1 % 2)
{

CIS27 - Programming in C++ 217

VII - Inheritance and Polymorphism

251
252
253
254
255
256
257
258
259
260
261
262

G2
G2

else

Gl.

Gl

.update (Gl1) ;
.print () ;
Gl.

release();

update (G2) ;

.print () ;
G2.

release () ;

CIS27 - Programming in C++

218

VII - Inheritance and Polymorphism

* kK Kk kK Output * Kk Kk Kk kK

WHROWORR OOWWWWOH
ROWWWHWH HHHWWOOH
HRHOHORW HOOHHHOH
ORWORHHR HOOOHOHH
HRWOHHHR 000ROWOW
HHRWWOWH HOORRWWW
WOHORWWH WHHORWWW
HWWROHRR WWHRRHWW
Cycle 1 Cycle 6

OHOWWWO O HHWWWWHO
OROWWHOH OO0OWWHHO
HOHHHROO OHHOOOHO
ROOHOO000 OHOHOHOO
HOORHOOO HHRORWHW
HOOWWHWH OHROQOWWW
WHHRRWWH WOHROWWW
OWWORHOO WWHOOHWW
Cycle 2 Cycle 7

OHWWWWHO OOWWWWOH
HOHWWHHO HHHWWOOH
HRHOOOHO HOOHHHOH
OHHORHOO HOHHHHHH
HHWOHHHW OO0OOROWOW
OHROOHWO HOORRWWW
WOHRRWWO WHHOWWWW
WWWROHHW WWHHWOWW
Cycle 3 Cycle 8

HOWWWWOH HHWWWWHO
HHHWWOOH OO0OWWHHO
HOOHHHOH OHHOOOHO
HOOHOOHH OHHO0O0000
0O0OROOOW HHRORWHW
HOORROWW OHRORWWW
WHHOOWWW WOORWWWW
WWOORHOW WWO OWWWW
Cycle 4 Cycle 9

OHWWWWHO OOWWWWOH
O0OWWHHO HHHWWOOH
OHHOOOHO HOOHWHOH
OHHHHHOO HOORWHHH
HHRORWHW OOORRWOW
OHROOWWW HHORRWWW
WOHRRWWW WWROWWWW
WWHOOHWW WWWIWIWWWW
Cycle 5 Cycle 10

CIS27 - Programming in C++

VII - Inheritance and Polymorphism

HHWWWWHO HHROOWHW
OO0OWWWHO OHRORWWW
OHHHWOHO WWRRWWWW
OHROOHOO WIWWWIWWWIN
C++ Input/Output & File I/O

Input / Output Classes

i0s_base
T

basic_istream<>
istream / wistream

A

basic_ios<>
i0s / wios

basic_iostream<>
iostream / wiostream

basic_streambuf<>
streambuf / wstreambuf

basic_ostream<>
ostream / wostream

CIS27 - Programming in C++

220

VIII - C++ Input/Output & File I/0

Class/Template Descriptions

i0s_base

basic_ios<>

ios
wios

basic_istream<>

istream
wistream

basic_ostream<>

ostream
wostream

basic_iostream<>
ostream
wostream

basic_streambuf<>

streambuf
wstreambuf

class that serves as a base for all stream classes. Contains stream state and
format flags.

class template derived from ios_base<>. Virtual base for stream classes.
Contains a pointer to the stream buffer, functions for stream state and error
indications.

basic_ios class for char type
basic_ios class for wchar type

class template derived from basic_ios<>. Defines streams used for input.

basic_istream class for char type
basic_istream class for wchar type

class template derived from basic_ios<>. Defines streams used for output.

basic_ostream class for char type
basic_ostream class for wchar type

class template derived from both basic_istream<> and basic_ostream<>.
Defines streams used for both input and output.

basic_iostream class for char type
basic_iostream class for wchar type

class template used to define interface to all stream types. Performs the
actual reading and writing to/from streams.

basic_streambuf class used to handle char type data.
basic_streambuf class used to handle wchar type data.

CIS27 - Programming in C++ 221

VIII - C++ Input/Output & File I/0

ios_base class

typedefs

typedef T1 fmtflags;

T1, T2 are integer types (int, enum, ...)

typedef T2 iostate;

constants

Format flag constants

These constants are used to assign a value to a fmtflags value. They represent formatting/parsing
specifications for a stream.

boolalpha
dec

fixed

hex
internal
left

oct

right
scientific
showbase
showpoint
showpos
skipws
unitbuf
uppercase

adjustfield
basefield
floatfield

reads or displays “true” or “false” for bool values instead of “1” or “0”.
reads or displays integer input/output as a decimal number.

displays floating point numbers in decimal format.

reads or displays integer input/output as a hexadecimal number.
displays octal, hexadecimal, and scientific numbers in internal format.
left justifies output in a field.

reads or displays integer input/output as an octal number.

right justifies output in a field.

displays floating point numbers in scientific (exponential) format.
displays a number base prefix for integer output (0x or 0X for hex and 0 for octal)
displays a decimal point in floating point numeric output.

displays a + sign for positive numeric output.

skips leading whitespace before >> operations.

flushes output stream after each insertion.

displays hexadecimal output and the e of scientific format in uppercase.

group (bitwise or) of three flags : left, right, and internal.
group (bitwise or) of three flags : hex, oct, and dec.
group (bitwise or) of two flags : fixed and scientific.

Stream state constants
These constants are used to assign a value to an iostate value. They represent the state of a

stream.

badbit
eofbit
failbit
goodbit

is set if a stream is corrupted.

is set if the EOF has been read.

is set if an 1/O operation fails.

is set if a stream is OK, no other bits set.

CIS27 - Programming in C++ 222

VIII - C++ Input/Output & File I/0

Some ios_base member functions

fmtflags flags() const;

fmtflags flags(fmtflags value);

fmtflags setf(fmtflags value);

fmtflags setf(fmtflags val, fmtflags mask);

void unsetf(fmtflags value);

streamsize precision() const;

streamsize precision(streamsize size);

streamsize width() const;

streamsize width(streamsize size);

returns the stream’s fmtflags settings

sets the streams fmtflags. Note: clears any other
flags already set.

sets the streams fmtflags. Note: does not clear
other flags already set.

first clears the mask settings, then sets the stream’s
fmtflags. Note: does not clear other flags already
set.

clears the fmtflags values(s).

returns the stream’s precision setting for floating
point values. Note: precision setting is the number
of decimal places if fixed or scientific is set. If
neither is set, the precision represents the number of
significant digits. In either case, the value is
automatically rounded to the precision setting.

sets the stream’s precision. See note above.

returns the stream’s field width that applies to the
next output value.

sets the stream’s minimum field width that applies
only to the next output value. The width applies to
both numeric and char data.

CIS27 - Programming in C++

223

VIII - C++ Input/Output & File I/0

Some basic_ios member functions

The ios class is a typedef for the instantiation of the basic_ios template of type char.

char_type fill() const;

char_type fill(char_type ch);
bool operator!() const;

bool bad() const;

void clear(iostream state=goodbit);

bool eof() const;

bool fail() const;

bool good() const;

iostate rdstate() const;

returns the fill character assigned to a stream. This
character is used to pad a field whose width is more
than the number of characters needed to display a
value.

sets the fill characted assigned to a stream.

returns fail().

returns true if the stream’s badbit is set. The bad()
function indicates a corrupted stream.

sets the iostate (by default to goodbit).

returns true if the eofbit is set (the stream’s EOF has
been read).

returns true if the stream’s failbit or badbit is set.
Use the fail() function to check to see if a file is
successfully opened.

returns true if the stream’s goodbit is set.

returns a streams iostate value.

CIS27 - Programming in C++

224

VIII - C++ Input/Output & File I/0

Some basic_istream member functions

The istream class is a typedef for the instantiation of the basic_istream template of type char.

streamsize gcount() const; returns the number of characters read by the last
input operation

int get(); reads and returns the next character available in a
stream. Returns EOF if no character is available.

istream specific functions

istream& get(char& ch); reads the next char and assignes it to ch. Returns
the “current” istream.

istream& get(char* buf, streamsize n); reads n-1 bytes and stores them in buf. A
newline(\n) will terminate the read. In that case, the
newline is not read and not stored. The char data
in buf is null-terminated.

istream& get(char* buf, streamsize n, char deliminator);
reads at most n-1 bytes and stores them in buf. If
the deliminator is encountered, the read ends. The
deliminator is not read and not stored. The char
data in buf is null-terminated.

istream& getline(char* buf, streamsize n); reads n-1 bytes and stores them in buf. A
newline(\n) will terminate the read. In that case, the
newline is read, but not stored. The char data in
buf is null-terminated. The newline (\n) is
considered the delimiter for this function. See
warning in next paragraph.

istream& getline(char* buf,streamsize n,char deliminator);
reads at most n-1 bytes and stores them in buf. If
the deliminator is encountered, the read ends. The
deliminator is read and not stored. The char data
in buf is null-terminated.

Warning: If the delimiter is not read, it is
considered an error. The failbit is set, even
though the stream data is stored in buf. This
warning does not apply to the get() function.

istream& ignore(streamsize n=1, int_type deliminator=EOF);

CIS27 - Programming in C++ 225

VIII - C++ Input/Output & File I/0

int_type peek();

istream& putback(char ch);

istream& read(char* buf, streamsize n);

extracts and discards n char or extracts until
deliminator is read.

returns the next available char. Does not increment

the current get pointer.

inserts the char ch into the input stream at the
current get pointer position-1. Moves the current
get pointer position back 1 byte.

reads n bytes into buf. buf is not null terminated.

streamsize readsome(char* buf, streamsize n);

istream& unget();

reads n bytes into buf. buf is not null terminated.
Returns the number of characters read. The
difference between read() and readsome() is that
readsome() does not set the failbit if it cannot read n
characters (if it encounters EOF before the read is
complete).

inserts the last char read into the input stream at its
original position.

CIS27 - Programming in C++

226

VIII - C++ Input/Output & File I/0

Some basic_ostream member functions

The ostream class is a typedef for the instantiation of the basic_ostream template of type char.

ostream& flush(); writes any data in the output buffer to the output
stream.

ostream specific functions
ostream& put(char ch); writes ch to the output stream.

ostream& write(char* buf, streamsize n); writes n bytes of char starting from the address buf
into the output stream.

CIS27 - Programming in C++ 227

VIII - C++ Input/Output & File I/0

Example 8-1 —ios_base fmtflags
This example demonstrates the ios_base member, fmtflags.

The following header file, fmtflags.h, will be used in the next few examples:

1 // File: fmtflags.h

2

3 #ifndef FMTFLAGS_H

4 #define FMTFLAGS_H

5

6 #include <iostream>

7 using namespace std;

8

9 void show_ fmtflags(ios_base& stream) {

10 if (&stream == &cout) cout << "cout ";

11 if (&stream == &cerr) cout << "cerr ";

12 if (&stream == &clog) cout << "clog ";

13 if (&stream == &cin) cout << "cin ";

14 cout << "ios base::fmtflags set: ";

15 if (stream.flags() & ios::boolalpha) cout << "boolalpha ";
16 if (stream.flags() & ios::dec) cout << "dec ";

17 if (stream.flags () & ios::fixed) cout << "fixed ";

18 if (stream.flags() & ios::hex) cout << "hex ";

19 if (stream.flags() & ios::internal) cout << "internal ";
20 if (stream.flags() & ios::left) cout << "left ";

21 if (stream.flags() & ios::oct) cout << "oct ";

22 if (stream.flags() & ios::right) cout << "right ";

23 if (stream.flags() & ios::scientific) cout << "scientific ";
24 if (stream.flags() & ios::showbase) cout << "showbase ";
25 if (stream.flags() & ios::showpoint) cout << "showpoint ";
26 if (stream.flags () & ios::showpos) cout << "showpos ";

27 if (stream.flags() & ios::skipws) cout << "skipws ";

28 if (stream.flags () & ios::unitbuf) cout << "unitbuf ";

29 if (stream.flags () & ios::uppercase) cout << "uppercase ";
30 cout << endl;

31}

32

33 #endif

CIS27 - Programming in C++ 228

VIII - C++ Input/Output & File I/0

O J o O b W DN

Or O O b Db D D DD DWW wwwwwwwwbdhdhdhdddNddNddNdNMdNNMdMNNNPRPEP PR PRPEPRPRE PR R PR PR o
N PO WOowJo b WNhE O WOoLJoyUldkd WNhEFEP O WO JoyUldbdh WDNhEFEP O WOW-To Uldbd Wb EFE O

// File: ex8-1l.cpp - ios::fmtflags

#include "fmtflags.h"

int main ()

{

// save the default fmtflags settings for cout
ios::fmtflags cout flags = cout.flags();

// print the default cout fmtflags settings value
cout << cout flags <<endl;

// display the default fmtflags values for cout, cin, cerr, clog
show fmtflags (cout);

show fmtflags(cin);

show fmtflags (cerr);

show fmtflags(clog);

// turn on hex for cout

cout.flags (ios::hex);

// display the fmtflags settings for cout

show fmtflags (cout);

// print some numbers

cout << 12 << ' ' << 123 << "' << 1234 << "' << 12345 << endl;

// turn on hex and showbase for cout

cout.flags (ios::hex|ios::showbase);

show fmtflags (cout);

cout << 12 << ' ' <K< 123 << ' T << 1234 << " ' << 12345 << endl;

// turn on hex, showbase, and uppercase for cout

cout.flags (ios::hex|ios::showbase|ios: :uppercase);

show fmtflags (cout);

cout << 12 << ' ' K< 123 << "' << 1234 << "' << 12345 << endl;

// turn on octal for cout

cout.flags(ios::oct);

show fmtflags (cout);

cout << 12 << ' ' << 123 << " ' << 1234 << ' ' << 12345 << endl;

// turn on octal and showbase for cout

cout.flags (ios::oct|ios::showbase);

show fmtflags (cout);

cout << 12 << ' ' << 123 << " ' << 1234 << ' ' << 12345 << endl;

// reset cout's flags back to the default settings
cout.flags (cout flags);

show fmtflags (cout);

cout << 12 << ' ' K< 123 << "' << 1234 << "' << 12345 << endl;

// print out the value for each of the fmtflags constants
cout << "ios::boolalpha=" <<jios::boolalpha << endl;

CIS27 - Programming in C++ 229

VIII - C++ Input/Output & File I/0

<< ios::dec << endl;

<< ios::fixed << endl;

<< ios::hex << endl;

<< jos::internal << endl;
<< jos::left << endl;

<< jos::oct << endl;

53 cout << "ios::dec="

54 cout << "ios::fixed="

55 cout << "ios::hex="

56 cout << "ios::internal="
57 cout << "ios::left="

58 cout << "ios::oct="

59 cout << "ios:

:right=" << ios::right << endl;

60 cout << "ios::scientific=" << ios::scientific << endl;
61 cout << "ios::showbase=" << ios::showbase << endl;
62 cout << "ios::showpoint=" << ios::showpoint << endl;
63 cout << "ios::showpos=" << ios::showpos << endl;

64 cout << "ios::skipws=" << ios::skipws << endl;

65 cout << "ios::unitbuf=" << ios::unitbuf << endl;

66 cout << "ios::uppercase=" << ios::uppercase << endl;
67 return 0;

68 }

xAAFKx Qutput (GNU ver. 4.32) **xx*xx%

4098

cout ios base::fmtflags set:

cin ios base::fmtflags set:

cerr ios base::fmtflags
clog ios base::fmtflags
cout ios base::fmtflags
c 7b 4d2 3039

cout ios base::fmtflags
Oxc 0x7b 0x4d2 0x3039
cout ios base::fmtflags
0XC 0X7B 0X4D2 0X3039
cout ios base::fmtflags

set:
set:
set:
set:

set:

set:

dec

skipws

dec skipws
unitbuf

dec
hex

hex

hex

oct

skipws

showbase

showbase uppercase

14 173 2322 30071

cout ios base::fmtflags set: oct showbase
014 0173 02322 030071
cout ios base::fmtflags set: dec skipws

12 123 1234 12345

ios::boolalpha=1
ios::dec=2
ios::fixed=4
ios::hex=8
ios::internal=16
ios::left=32
ios::oct=64
ios::right=128
ios::scientific=256
ios::showbase=512
ios::showpoint=1024
ios: :showpos=2048
ios::skipws=4096

ios:
ios:

* Kk k kKK

:unitbuf=8192
:uppercase=16384

OO OO OO U U Ul OOt D DWWWWNDNNMNNMNNRERRRRE
O U WNEFE OWOWJo0Uld WN WO WWOO i WWOoO B DNJOY Ul

Output (MS Visual C++ 2008) *x*x*#**x*

CIS27 - Programming in C++ 230

VIII - C++ Input/Output & File I/0

513

cout ios base::fmtflags set:

cin ios base::fmtflags set:

cerr ios base:
clog ios base:
cout ios base:
c 7b 4d2 3039
cout ios base:
Oxc 0x7b 0x4d2
cout ios base::
0XC 0X7B 0X4D2
cout ios base::

:fmtflags
:fmtflags
:fmtflags

:fmtflags

0x3039
fmtflags
0X3039
fmtflags

14 173 2322 30071

cout ios base::
014 0173 02322
cout ios base::

fmtflags
030071
fmtflags

12 123 1234 12345

ios::boolalpha=

ios::dec=512

ios::fixed=8192

ios::hex=2048

16384

ios::internal=256

ios::left=64
ios::o0ct=1024
ios::right=128

ios::scientific=4096

ios: :showbase=8
ios::showpoint=
ios::showpos=32

ios::skipws=1
ios::unitbuf=2

ios::uppercase=

16

4

set:

set:

set:

set:

set:

set:

set:

set:

dec

skipws

dec skipws

dec

dec

hex

hex

hex

oct

oct

dec

skipws unitbuf
skipws

showbase

showbase uppercase

showbase

skipws

e e o ~ ~ —~ —~ —~ o~

OO OO OO U OOl Ul Ul OOl Ul dDdDWWWWNDNNNDNNRERRERERE
O U WNE O WOWTOU B WN WO WWOO™WWOWNJON U

CIS27 - Programming in C++

231

VIII - C++ Input/Output & File I/0

Example 8-2 — ios_base member functions

This examples demonstrates some of the ios_base member functions.

O 00 J o U W N

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// File: ex8-2.cpp - ios base member functions
#include "fmtflags.h"
int main ()

{
// Display cout's default width, fill, and precision settings

cout << "cout.width ()=" << cout.width () <<endl;

cout << "cout.fill()=" << cout.fill() << " ' << (int) cout.fill ()
<< endl;

cout << "cout.precision()=" << cout.precision() <<endl;

// Display cin's default width, fill, and precision settings

cout << "cin.width()=" << cin.width () <<endl;

cout << "cin.fill()=" << cin.fill() << " " << (int) cin.fill ()
endl;

cout << "cin.precision()=" << cin.precision() <<endl;

// Display cerr's default width, fill, and precision settings

cout << "cerr.width()=" << cerr.width () <<endl;

cout << "cerr.fill()=" << cerr.fill () << " ' << (int) cerr.fill ()
<< endl;

cout << "cerr.precision()=" << cerr.precision() <<endl;

// Demonstrate the ios base::width() function

cout << 1 << 2 << 3 << endl;
cout.width (5) ;
cout << 1 << 2 << 3 << endl;

// Demonstrate the width () function for char data
cout.width (5) ;

cout << 'a' << 'b' << '¢' << endl;

cout.width (5);

cout << "a" << "b" << "¢" << endl;

// What happens when a value's length exceeds the width setting
cout.width (3);
cout << 123456789 << '|' <<"hey\n";

// width and left justification
cout.setf (ios::left,ios::adjustfield);
cout.width (5) ;

cout << 1 << 2 << 3 << endl;

// Demonstrate fill ()
cout.fi11('s$");
cout.width(10) ;

|

cout << 1 << '"|'" << 1 << endl;

CIS27 - Programming in C++ 232

VIII - C++ Input/Output & File I/0

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

<<

<<

<<

// Set precision to 4
cout.precision (4);
cout.width (10) ;

cout << 123.45678 << '"|'" << 1234567.8 << "|'" << 1.2345678 <<

12345678 << endl;

// precision set to 4 and fixed flag set
cout.setf (ios::fixed, ios::floatfield);
cout.width (10);

cout << 123.45678 << '"|' << 1234567.8 << '"|'" << 1.2345678 <<

12345678 << endl;

// Any difference between float and double?
float £ = 314.f;
cout << f << '"|' << 314. << endl;

// Turn off fixed setting
cout.unsetf (ios::fixed);
cout << f << '"|' << 314. << endl;

// Turn on showpoint
cout.setf (ios::showpoint) ;
cout << f << '"|' << 314. << endl;

// Turn on fixed
cout.setf (ios::fixed,ios::floatfield);

cout << 123.45678 << '"|' << 1234567.8 << '"|'" << 1.2345678 <<

12345678 << endl;

// Clear the flags for cout and turn on hex for cin
cout.flags(ios base::fmtflags(0));

cin.setf (ios::hex|ios::basefield);

cout.width (35);

cout << "Enter a hexadecimal number => ";

int Hex;

cin >> Hex;

// Display the Hex value in decimal and hex
cout << "Hex=" << Hex << '|' << hex << Hex << endl;

// Check the format flags for cin and cout
show fmtflags(cin);
show fmtflags (cout);

// Turn on hex, the right way
cin.setf (ios::hex,ios::basefield);
cout << "Try again, dummy => ";
cin >> Hex;

cout << Hex << endl;

// Is there a problem with cin

l|l

l|l

CIS27 - Programming in C++

233

VIII - C++ Input/Output & File I/0

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

cout << "cin.rdstate=" << cin.rdstate() << endl;

// What are the format flag settings for cin and cout
show fmtflags(cin);
show fmtflags (cout);

// Fix the problem with cin
cin.clear () ;
cout << "cin.rdstate=" << cin.rdstate() << endl;

// Clear the input buffer
cin.ignore (50, '\n");

// Try again for the Hex input

cout << "0k, get it right this time => ";
cin >> Hex;

cout << Hex << endl;

return 0;

kxxx% Qutput (MS Visual C++ 2008) *xxx*

cout.width () =0
cout.fill ()=

32

cout.precision()=6
cin.width () =0
cin.fill ()= 32
cin.precision()=6
cerr.width ()=0
cerr.fill ()= 32
cerr.precision()=6

123

123
abc
abc

123456789 |hey

1

23

155888885511
123.58888511.235e+006(1.235(12345678
123.4568$511234567.800011.2346112345678
314.00001314.0000

3141314

314.01314.0
123.4568(1234567.800011.2346112345678
$S$$SSEnter a hexadecimal number => abe
Hex=-858993460 | ccccccce

cin ios base::fmtflags set: dec hex oct skipws
cout ios base::fmtflags set: hex

Try again, dummy => cccccccc
cin.rdstate=2

cin ios base::fmtflags set: hex skipws

CIS27 - Programming in C++ 234

VIII - C++ Input/Output & File I/0

cout ios base::fmtflags set: hex
cin.rdstate=0

Ok, get it right this time => abec
abc

*xxk%kx OQutput (GNU ver. 4.32Db) **x*xx

cout.width ()=0
cout.fill ()= 32
cout.precision()=6
cin.width () =0
cin.fill ()= 32
cin.precision()=6
cerr.width ()=0
cerr.fill ()= 32
cerr.precision () =6
123

123

abc

abc
123456789 | hey
1 23
1855855555511
123.585$55$11.235e+0611.235|12345678
123.45685511234567.800011.234612345678
314.0000(1314.0000
314|314
314.01314.0
123.456811234567.800011.2346112345678
$$$S$SEnter a hexadecimal number => abc
Hex=41976961400d40
cin ios base::fmtflags set: dec hex oct skipws
cout ios base::fmtflags set: hex
Try again, dummy => 400440
cin.rdstate=4
cin ios base::fmtflags set: hex skipws
cout ios base::fmtflags set: hex
cin.rdstate=0
Ok, get it right this time => abc
abc

3 What happened to the output on Line 88?

The error was actually made in line 81, cin.setf(ios::hex|ios::basefield);. We want
cin.setf(ios::hex,ios::basefield) here. By using the | we turn on the hex, dec, and oct fmtflags.

CIS27 - Programming in C++ 235

VIII - C++ Input/Output & File I/0

Example 8-3 — istream member functions

1 #include <iostream>

2 using namespace std;

3

4 int main ()

5

6 char temp[80], ch;

7

8 cout << "Enter something => ";

9

10 // Get the first 6 bytes of the input buffer
11 cin.get (temp, 7);

12 cout << "temp=" << temp << endl;

13

14 // Get the next 7 bytes of the input buffer
15 cin.get (temp, 8) ;

16 cout << "temp=" << temp << endl;

17

18 // Get the next bytes from the input buffer
19 cin.get (ch);

20 cout << "ch=" << ch << endl;

21

22 // Get the rest of the input buffer until '\n' is read
23 while (cin.get(ch) && ch != "\n'") {

24 cout << ch;

25 }

26 cout << endl;

27

28 cout << "Enter something else => ";

29 // Get some more data from the input buffer up to 'v'
30 cin.getline (temp, sizeof (temp), 'v'");

31 cout << "temp=" << temp << endl;

32

33 // Read 6 more bytes from the input buffer
34 cin.getline (temp, 7);

35 cout << "temp=" << temp << endl;

36

37 // Read 1 more byte from the input buffer

38 cin.get (ch);

39 cout << "ch=" << ch << endl; // What happened here?
40

41 // Look at the next byte in the input buffer
42 cout << "cin.peek()=" << cin.peek() << endl;
43

44 // What is the state of cin

45 cout << "cin.rdstate()=" << cin.rdstate () << endl;
46

47 // Clear the state of cin

48 cin.clear () ;

49

CIS27 - Programming in C++ 236

VIII - C++ Input/Output & File I/0

50 // Read 1 byte from the input buffer

51 cin.get (ch);

52 cout << "ch=" << ch << endl;

53

54 // Write the last byte read back into the input buffer
55 cin.unget () ;

56

57 cin.putback ('X");

58 cin.getline (temp, sizeof (temp)) ;

59 cout << "temp=" << temp << endl;

60

61 cout << "Enter some more => ";

62 cin.read (temp, 6) ;

63 cout << "cin.gcount ()=" << cin.gcount () << endl;
64 cout << "temp=" << temp << endl;

65 cin.ignore (5);

66 cin >> temp;

67 cout << "temp=" << temp << endl;

68 cin.ignore (80, '\n");

69

70 cout << "Enter one last time => ";

71

72 // Read the first word from the input buffer

73 cin >> temp;

74 cout << "temp=" << temp << endl;

75

76 // Read 7 more bytes into temp

77 cout << "cin.readsome (temp,7)=" << cin.readsome (temp,7) << endl;
78 cout << "temp=" << temp << endl;

79 cout << "cin.readsome (temp,10)=" <<cin.readsome (temp,10) << endl;
80 cout << "temp=" << temp << endl;

81 return 0;

82 }

*xkxk%kx Output (MS Visual C++ 2008) ****xx

Enter something => Have a nice day.

temp=Have a

temp= nice d

ch=a

y.

Enter something else => Have a very nice day.
temp=Ha

temp=e a ve

ch=

cin.peek()=-1

cin.rdstate () =2

ch=r

temp=Xry nice day.

Enter some more => Have a totally excellent day.
cin.gcount () =6

CIS27 - Programming in C++ 237

VIII - C++ Input/Output & File I/0

temp=Have ace day.

temp=11ly

Enter one last time => That's enough now.
temp=That's

cin.readsome (temp, 7)="7

temp= enoughe day.
cin.readsome (temp, 10)=6

temp= now.

he day.

*xxxx%k Qutput (GNU ver. 4.32b) *x*x**x*

Enter something => Have a nice day.

temp=Have a

temp= nice d

ch=a

y.

Enter something else => Have a very nice day.
temp=Ha

temp=e a ve

ch=

cin.peek()=-1
cin.rdstate()=4
ch=r

temp=Xry nice day.

Enter some more => Have a totally excellent day.

cin.gcount () =6

temp=Have ace day.

temp=1ly

Enter one last time => That's enough now.
temp=That's

cin.readsome (temp, 7) =0

temp=That's

cin.readsome (temp, 10)=0

temp=That's

What happened on line 41?

The problem really occurred on line 36, cin.getline(temp,7);. The default delimiter for this
version of getline() is ‘\n” (or more precisely, widen(\n’)). The getline() function expects to read
the delimiter. If the delimiter is not encounter in the “n-1"" characters, the the failbit is set, That
is, the read in not successful, even though the n-1 characters were read and stored in the buffer.
Advice, be careful with this function and check the stream state if there is any possibility that the

delimiter may not be present.

CIS27 - Programming in C++

238

VIII - C++ Input/Output & File I/0

Example 8-4 - ostream member functions: put() and write()
The following examples illustrates the use of ostream put() and write() functions.

1 // File: ex8-4.cpp - ostream member functions: put() and write ()
2
3 #include <iostream>
4 using namespace std;
5
6 struct stuff {
7 int a;
8 short b;
9 long c;
10 float d;
11 double e;
12 char f£;
13 char* g;
14 char h[l6];
15 };
16
17
18 int main(void)
19 {
20 char text[] = "The quick brown fox jumped over the lazy poodle";
21 for (int i = 0; i< 20; i++) {
22 cout.put (text[i]):;
23 }
24 cout.put ('\n"'");
25
26 cout.write (text,sizeof (text));
27 cout << endl;
28
29 stuff thing;
30 thing.a = 57;
31 thing.b = 98;
32 thing.c = 123456789;
33 thing.d = 1.2;
34 thing.e = 2.7;
35 thing.f = '*';
36 thing.g = text;
(

37 strcpy (thing.h, "bet the farm");

38

39 cout.write ((char*) &thing,sizeof (thing));
40 cout << endl;

41

42 return 0;

43 1}

* Kk Kk Kk kK Output * kK kKK

The quick brown fox
The quick brown fox jumped over the lazy poodle
9 b §=[U00?200000086*3© $5¢ bet the farm

CIS27 - Programming in C++ 239

VIII - C++ Input/Output & File I/0

CIS27 - Programming in C++ 240

VIII - C++ Input/Output & File I/0

Input/Output Manipulators

Manipulators are functions or function-like operators that change the state of the I/O stream.
Those manipulators with arguments require the <iomanip> header file.

Manipulator 1/0 | Purpose

boolalpha I/0O | sets boolalpha flag

dec I/0 | sets dec flag for i/o of integers, clears oct,hex
endl O | inserts a newline and flushes output stream
ends O | inserts anull

fixed O | sets fixed flag

flush O | flushes stream

hex I/0 | sets hex flag for i/o of integers, clears dec,oct
internal O | sets internal flag

left O | sets left flag

noboolalpha I/0 | clears boolalpha flag

noshowbase O | clears showbase flag

noshowpoint O | clears showpoint flag

noshowpos O | clears showpos flag

noskipws I clears skipws flag

nounitbuf O | clears unitbuf flag

nouppercase O | clears uppercase flag

oct I/0 | sets oct flag for i/o of integers, clears dec,hex
resetiosflags(ios_base::fmtflags mask) | I/O | clears format flags specified by mask

right O | setsright flag

scientific O | sets scientific flag

setbase(int base) I/0 | sets integer base (8, 10, or 16)
setfill(char_type ch) O | sets the fill character to ch
setiosflags(ios::base::fmtflags mask) | I/0 | sets fomat flags to mask value
setprecision(int p) O | sets precision of floating point numbers
setw(int w) O | sets output field width to w

showbase O | sets showbase flag

showpoint O | sets showpoint flag

showpos O | sets showpos flag

skipws I sets skipws flag

unitbuf O | sets unitbuf flag

uppercase O | sets uppercase flag

WS I extracts whitespace

CIS27 - Programming in C++

241

VIII - C++ Input/Output & File I/0

Example 8-5 — Input/Output manipulators

The following examples illustrates the use of standard input/output manipulators.

O ~J o O W DN

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// File: ex8-5.cpp - I/0 Manipulators

#include <iomanip>
using namespace std;

#include "fmtflags.h"

int main () {
// save the initial cout flags settings

ios base::fmtflags cout fmtflags = cout.flags();

// Display the cout flags
show fmtflags (cout);

// hex, oct, & dec manipulators
cout << hex << 123 << ' ' << oct << 123 << ' ' <<dec<kk1l23<<endl;
show fmtflags (cout);

// Turn on showpos, uppercase, showpoint, left, hex, (dec on)
cout << setiosflags(ios::showpos|ios::uppercasel|ios: :showpoint|
ios::showbase|ios::left|ios::hex)
<< 123 << endl;
show fmtflags (cout);

// Clear the dec flag
cout << resetiosflags (ios::dec) << 123 << endl;
show fmtflags (cout);

// Demonstrate the setfill and setw manipulators
cout << setfill('$') << setw(1l0) << 123 << endl;
cout << 123 << endl;

// Reset cout's flags back to the original settings
cout.flags (cout fmtflags);

// Turn on hex
cout << hex << 123 << endl;
show fmtflags (cout);

// Turn on octal
cout << oct << 123 << endl;
show fmtflags (cout);

// Demonstrate setprecision
cout << setprecision (3)
<< 1.2 << "'« 3014 << " T << 35 << " Y << 3.14159 << endl;

CIS27 - Programming in C++ 242

VIII - C++ Input/Output & File I/0

49 // Demonstrate setprecision with showpoint

50 cout << showpoint

51 << 1.2 << ' ' 3.14 << " " << 35 << " Y << 3.14159 << endl;
52

53 // Demonstrate showpos

54 cout << showpos

55 << 1.2 << "'« 3014 << T << 35 << " Y << 3.14159 << endl;
56

57 show fmtflags (cout);

58

59 // Back to decimal

60 cout << dec

61 << 1.2 << ' ' 3.14 << " " << 35 << " Y << 3.14159 << endl;
62 show fmtflags (cout);

63

64 // What is truth?

65 cout << true << ' ' << boolalpha << true << endl;

66 show fmtflags (cout);

67

68 return O;

69 }

* kK kKK Output * kK kKK

cout ios base::fmtflags set: dec skipws

7b 173 123

cout ios base::fmtflags set: dec skipws

123

cout ios base::fmtflags set: dec hex left showbase showpoint showpos skipws uppercase
0X7B

cout ios base::fmtflags set: hex left showbase showpoint showpos skipws uppercase
0X7B$$SS$S

0X7B

b

cout ios base::fmtflags set: hex skipws

173

cout ios base::fmtflags set: oct skipws

1.2 3.14 43 3.14

1.20 3.14 43 3.14

+1.20 +3.14 43 +3.14

cout ios base::fmtflags set: oct showpoint showpos skipws

+1.20 +3.14 +35 +3.14

cout ios base::fmtflags set: dec showpoint showpos skipws

1 true

cout ios base::fmtflags set: boolalpha dec showpoint showpos skipws

CIS27 - Programming in C++ 243

VIII - C++ Input/Output & File I/0

Overloading the Insertion and Extraction Operators

Example 8-6 - Overloading the insertion operator

o J oy U b Wb

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// File: ex8-6.cpp - Overloading the insertion operator

#include <iostream>
using namespace std;

const char* suit name[4] = {"clubs","diamonds","hearts", "spades"};
const char* value name[13] = {"two","three","four","five", "six",
"Seven", lleight", llnine", "ten", "jack", llqueen", llking", "ace" } ;

class card {
private:
int suit;
int value;
public:
card (int=0) ;
friend ostreamé& operator<< (ostreamé&,const cardé);

};

card: :card(int x) {
suit = x / 13;
value = x % 13;

ostream& operator<<(ostreamé& s,const cardé& c) {
s << value name[c.value] << " of " << suit name[c.suit] << endl;
return s;

}

int main (void)
{
card cl(47);
card c2;
cout << cl;
cout << c2;
cout << card(3) << card(4);

return O;

* Kk kK kK Output * Kk kK kK

ten of spades
two of clubs
five of clubs
six of clubs

CIS27 - Programming in C++ 244

VIII - C++ Input/Output & File I/0

Example 8-7 - Overloading Insertion and Extraction

O ~J o O W DN

= = o
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

// File: ex8-7.cpp

#include <iostream>
#include <cmath>
using namespace std;

class fraction
{
private:
int numer;
int denom;

public:
fraction () {}
fraction(int n, int d) : numer(n), denom(d) {}

int get numer(void) const { return numer; }
int get denom(void) const { return denom; }
void reduce (void) ;
friend istreamé& operator>>(istream& s, fractioné& f);

}i

void fraction: :reduce (void)

{

int min;
// find the minimum of the denom and numer
min = abs (denom) < abs (numer) ? abs (denom) : abs (numer):;
for (int 1 = 2; 1 <= min; i++)
{
while ((abs(numer) % 1 == 0) && (abs(denom) % 1 == 0))

{
numer /= 1i;
denom /= 1i;

}

return;

}

// extraction's a friend
istream& operator>>(istream& s, fraction& f£f)
{

s >> f.numer >> f.denom;

return s;

}

// insertion's not a friend

ostream& operator<<(ostream& s, fraction f)

{
f.reduce();
s << f.get numer () << v/ L f.get denom();
return s;

CIS27 - Programming in C++ 245

VIII - C++ Input/Output & File I/0

51 int main(void)

52 {

53 fraction £(3,4);
54 cout << f << endl;
55 fraction g(2,4);
56 cout << g << endl;
57 cout << "Enter a fraction: numerator denominator => ";
58 fraction h;

59 cin >> h;

60 cout << h << endl;
61 return 0;

62 }

* kK Kk kK Sample Run * kK Kk kK

3/4
1/2
Enter a fraction: numerator denominator => 6 8
3/4

v Why the the fraction passed by value in the overloaded insertion operator function?

CIS27 - Programming in C++ 246

VIII - C++ Input/Output & File I/0

Example 8-8 - Printing a deck

Here’s one more example of overloading the insertion operator.

1 // File: ex8-8.cpp - overloading the insertion operator
2

3 #include <iostream>

4 4#include <cmath>

5 using namespace std;

6

7 const char suit char[5] = "CDHS";

8 const char value char[14] = "23456789TJQKA";

9

10 class deck; // forward declare the deck
11

12 class card

13 {

14 private:

15 int suit;

16 int value;

17 public:

18 card (int) ;

19 friend ostreamé& operator<<(ostreamé&,const decké&);
20 };

21

22 card::card(int x)

23 |

24 suit = x / 13;

25 value = x % 13;

26 '}

27

28

29 class deck

30 |

31 private:

32 card* d[52];

33 public:

34 deck () ;

35 ~deck () ;

36 friend ostreamé& operator<<(ostreamé&,const decké&);
37 };

38

39 deck: :deck()

40 |

41 for (int i = 0; 1 < 52; 1i++) d[i] = new card(i);
42 1}

43

44 deck: :~deck()

45 |

46 for (int i = 0; 1 < 52; i++) delete d[i];

47 }

CIS27 - Programming in C++ 247

VIII - C++ Input/Output & File I/0

48 int main(void)

49 {

50 deck cards;

51 cout << cards;

52 return 0;

53 '}

54

55 ostream& operator<<(ostreamé& s,const decké& dk)
56 |

57 for (int 1 = 0; 1 < 52; 1++)

58 {

59 s << value char[dk.d[i]->value] << suit char[dk.d[i]->suit];
60 if (i % 13 == 12) s << endl;

61 else s << ' ';

62 }

63 return s;

64 }

* kK kKK Output * kK kKK

2C 3C 4C 5C 6C 7C 8C 9C TC JC QC KC AC
2D 3D 4D 5D 6D 7D 8D 9D TD JD QD KD AD
2H 3H 4H S5H 6H 7H 8H 9H TH JH QH KH AH
25 35S 45 55 6S 7S 8S 95 TS JS QS KS AS

v Why does operator<< need to be a friend of both the card and the deck classes?

CIS27 - Programming in C++ 248

VIII - C++ Input/Output & File I/0

C++ File I/O

basic_istream<>
istream / wistream

i0s_base

]
A

basic_ios<>
i0os / wios

/
e

basic_streambuf<>
streambuf / wstreambuf

4

basic_filebuf<>
streambuf/wstreambuf

basic_ostream<>
ostream / wostream

basic_iostream<>
iostream / wiostream

basic_ifstream<>
ifstream/wifstream

A

basic_fstream<>
fstream/wfstream

A

basic_ofstream<>
ofstream/wofstream

CIS27 - Programming in C++

249

VIII - C++ Input/Output & File I/0

Class/Template Descriptions

basic_ifstream<>

ifstream
wifstream

basic_ofstream<>

ofstream
wofstream

basic_fstream<>

fstream
wfstream

class template derived from basic_istream<>. Defines file streams used
for input.

basic_ifstream class for char type

basic_ifstream class for wchar type

class template derived from basic_ostream<>. Defines file streams used
for output.

basic_ofstream class for char type

basic_ofstream class for wchar type

class template derived from basic_iostream<>. Defines file streams used

for both input and output.

basic_fstream class for char type
basic_fstream class for wchar type

CIS27 - Programming in C++ 250

VIII - C++ Input/Output & File I/0

basic_ifstream<> members

basic_ifstream();

explicit basic_ifstream(const char* filename, ios_base::openmode mode = ios_base::in);!
void close();

bool is_open();

void open(const char* filename, ios_base::openmode mode = ios_base::in);

basic_ofstream<> members

basic_ofstream();

explicit basic_ofstream(const char* filename, ios_base::openmode mode = ios_base::out);
void close();

bool is_open();

void open(const char* filename, ios_base::openmode mode = ios_base::out);

basic_fstream<> members

basic_fstream();

explicit
basic_fstream(const char* filename, ios_base::openmode mode = ios_base::in | ios_base::out);

void close();
bool is_open();

void open(const char* filename, ios_base::openmode mode = ios_base::in | ios_base::out);

L explicit means that an object of this type can only be create by an explicit declaration of the object, and not by a
conversion

CIS27 - Programming in C++ 251

VIII - C++ Input/Output & File I/0

Example 8-9 - Simple File I/O

O ~J o O W DN

[USIEN GO \ TN \C RN AT O RN \C RN O RN \C I ORI \ O RN O R el e i el el el e B e
R O W 0o J oy U dbd WDNEFP O WOWw-Ioy Ul b WDN BEFE O

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

// File: ex8-9.cpp

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main (void)

{
ifstream f1l ("ex8-9.cpp"):
ifstream f2 ("nofile");

ofstream f£3("file.one");
fstream f4 ("iofile");

char buff[80];

if (!'f1l) |
cout << "Hey, I can't find the \"ex8-9.cpp\" file\n";
exit(1l);

}

cout << boolalpha; // turn on "true"/"false" for cout's bools

cout << "f2.rdstate()=" << f2.rdstate() << endl;

cout << "f2.fail()=" << f2.fail() << endl;

cout << "f2.bad()=" << f2.bad() << endl;

if (f2.fail())
cout << "Hey, I can't find \"nofile\", but who cares\n";
if (£3)
cout << "Hey, I've decided to create a \"file.one\"
file\n";

f1l >> buff;
cout << buff << endl;

f3 << "Have a nice day\n" << endl;

// did f4 get opened?

cout << "f4.is open()=" << f4.is open()<<endl;
cout << "f4d.good()=" << f4.good()<<endl;

cout << "f4.bad()=" << f4.bad()<<endl;

cout << "f4.fail()=" << f4.fail()<<endl;

// try to write using the f4 stream
f4 << buff << endl;

// recheck f4's status

cout << "f4.is open()=" << f4.is open()<<endl;
cout << "f4d.good()=" << f4.good()<<endl;
cout << "f4.bad()=" << f4.bad()<<endl;

CIS27 - Programming in C++ 252

VIII - C++ Input/Output & File I/0

50 cout << "f4.fail()=" << f4.fail()<<endl;
51 return 0;

52 }

kkk* Qutput - MS Visual CH++ 2008 ***x*

f2.rdstate ()=2

f2.fail ()=true

f2.bad()=false

Hey, I can't find "nofile", but who cares
Hey, I've decided to create a "file.one" file
//

f4.is open()=false

f4.go0d()=false

fd4d.bad()=false

f4.fail ()=true

f4.is open()=false

f4.go00d()=false

f4.bad()=true

f4.fail ()=true

*HFFxxxx Qutput - gnu version 4.32b FFrxxx

f2.rdstate () =4

f2.fail ()=true

f2.bad()=false

Hey, I can't find "nofile", but who cares
Hey, I've decided to create a "file.one" file
//

f4.is open()=false

f4.good()=false

f4.bad()=false

fd4.fail ()=true

f4.is open()=false

f4.good()=false

fd.bad()=false

fd4.fail ()=true

CIS27 - Programming in C++

253

VIII - C++ Input/Output & File I/0

More I/O Members and Types
ios_base class

typedefs

typedef T3 openmode;

constants

Open mode constants

These constants are used to assign a value to an openmode value. They represent the mode for
opening a stream.

app position to the end of the stream before each write operation.
ate position to the end of the stream when the stream is opened.
binary open the stream in binary mode (newlines are 1 byte).

in open for input.

out open for output

trunc delete an existing file when opening.

Positioning constants

These constants are used to assign a value to a seekdir value. They used for relative positioning
in a file stream with the seekg() and seekp() functions.

beg position is relative to the beginning of a file stream.
cur position is relative to the current position in a file stream.
end position is relative to the end of a file stream.

CIS27 - Programming in C++ 254

VIII - C++ Input/Output & File I/0

More basic_istream members

istream& seekg(ios_base::pos_type pos); positions to the location indicated by pos in a file
stream. pos_type is the type returned by the tellg()
function.

istream& seekg(ios_base::pos_type pos, ios_base::seekdir dir);
seeks to the position pos characters from dir in a file
stream.

pos_type tellg(); returns the character position in the file stream. If
the stream state is non-zero, then the function
returns pos_type (-1).

More basic_ostream members

ostream& seekp(ios_base::pos_type pos); positions to the location indicated by pos in a file
stream. pos_type is the type returned by the tellp()
function.

ostream& seekp(ios_base::pos_type pos, ios_base::seekdir dir);
seeks to the position pos characters from dir in a file
stream.

pos_type tellp(); returns the character position in the file stream. If
the stream state is non-zero, then the function
returns pos_type (-1).

CIS27 - Programming in C++ 255

VIII - C++ Input/Output & File I/0

Example 8-10 — File 1/0 — positioning in a file

1 // File ex8-10.cpp - file I/0

2

3 #include <fstream>

4 #include <iostream>

5 #include <cstdlib>

6 #include <cstring>

7 using namespace std;

8

9 int main()

10 {

11 int ch, 1i;

12

13 // Open a file for output

14 ofstream fout ("da file");

15

16 // Check file open

17 if (!fout) {

18 cerr << "I can't open \"da file\"\n";
19 exit (EXIT FAILURE) ; // EXIT FAILURE signifies failure
20 }

21

22 // Write 4 lines into the file
23 fout << "Have a nice day\n";
24 fout << 7 << endl;

25 fout << 3.14159 << endl;

26 fout << hex << 123 << " ' << oct << 123 << endl;
27

28 // Close the file

29 fout.close () ;

30

31 // Open the file for input

32 ifstream fin("da file");

33

34 // Check input file open
35 if (!'fin) {

36 cerr << "I can't open \"da file\"\n";

37 exit (EXIT FAILURE) ;

38 }

39

40 char buff[80];

41

42 // Read each line from the file

43 while (!fin.getline (buff,80).eo0f()) {

44 // Print the length of the line and its contents
45 cout << strlen(buff) << "\t' << buff << endl;
46 }

47

48 // Print the current position in the file

49 cout << fin.tellg() << endl;

50

CIS27 - Programming in C++

256

VIII - C++ Input/Output & File I/0

51 // Move to byte 7 (the 8th byte) in the file
52 fin.seekg(7,1i0s base::beqg);

53

54 // Print the current position in the file

55 cout << fin.tellg() << endl;

56

57 // Set the boooalpha flag for cout

58 cout.setf (ios base::boolalpha);

59

60 // Print the file's stream state and state bits
61 cout << "fin.rdstate()=" << fin.rdstate():;
62 cout << " fin.bad()=" << fin.bad():;

63 cout << " fin.fail()=" << fin.fail();

64 cout << " fin.eof ()=" << fin.eof () <<endl;
65

66 // Clear the stream state

67 fin.clear();

68

69 // Print the file's stream state and state bits
70 cout << "fin.rdstate()=" << fin.rdstate();
71 cout << " fin.bad()=" << fin.bad();

72 cout << " fin.fail()=" << fin.fail();

73 cout << " fin.eof ()=" << fin.eof () <<endl;
74

75 // Move to byte 7 (the 8th byte) in the file
76 fin.seekg(7,1i0s base::beg);

77

78 // Print the current position in the file

79 cout << fin.tellg() << endl;

80

81 // Read the next "word" from the file

82 fin >> buff;

83

84 // Print the "word"

85 cout << buff << endl;

86

87 // Print the current position in the file

88 cout << fin.tellg() << endl;

89

90 // Read the next 10 characters

91 for (i = 0; 1 < 10; 1i++) {

92 ch = fin.get (),

93 // Print counter, char (as int), char, and stream position
94 cout << i << '"\t' << ch << '"\t' << (char) ch << "\t'
95 << fin.tellg() << endl;

96 }

97

98 return 0;

99

CIS27 - Programming in C++ 257

VIII - C++ Input/Output & File I/0

* kK Kk kK

15
1
7
6
-1
37

fin.rdstate ()=0
fin.rdstate ()=0
7
nice
11
0 32
1 100
2 97
3 121
4 10
17
5 55
6 10
20
7 51
8 46
9 49
*)k k k kK Output
15 Have a nice day
1 7
7 3.14159
6 7o 173
-1
-1

Output

Have a nice day

-
3.14159
b 173

(MS Visual C++ 2008)

* kK kkkk

fin.bad()=false fin.fail ()=false fin.eof ()=false!
fin.bad()=false fin.fail()=false fin.eof ()=false

oY

12
13
14
15

18

21
22
23

(GNU 4.32b)

fin.rdstate()=6 fin.bad()=false fin.fail()=true fin.eof ()=true
fin.rdstate()=0 fin.bad()=false fin.fail()=false fin.eof ()=false

7
nice
11

0

(@) W N

(&)}

(00

32
10
97
12
10
16
55
10
18
51
46
49

0

1

(o}

=

12
13
14
15

17

19
20
21

! The fin.eof()=false is unexpected, but is was found that the fin.seekg() on line 52 clears the stream state, even
though the seekg() does not succeed.

CIS27 - Programming in C++

258

VIII - C++ Input/Output & File I/0

¥ What’s the difference between the two outputs? Why?

CIS27 - Programming in C++ 259

VIII - C++ Input/Output & File I/0

Example 8-11 - File I1/O — positioning, modes, and stream state

O ~J o O W DN

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

// File ex8-1ll.cpp - positioning, modes, and stream state

#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;

void print file(istreamé&);
int main () {

// Declare and open an output file stream
ofstream fout ("da file");

// Check the file open

if (!fout) {
cerr << "I can't open \"da file\"\n";
exit (EXIT FAILURE);

}

// write 3 lines into a new file

fout << "Have a nice day.\n";

fout << "Have a great day.\n";

fout << "Have a totally excellent day.\n";

// close the file Why?
fout.close () ;

// re-open the file as an fstream object for input and output
fstream finout("da file",ios base::in|ios base::out);

print file(finout);

// clear the EOF bit
finout.clear();

// position to byte 7 in the file
finout.seekp(7,1i0s::beqg);

// Are the get and put pointers the same?
cout<< "finout.tellg()=" << finout.tellg ()<< endl;
cout<< "finout.tellp()=" << finout.tellp ()<< endl;

// replace "nice" with "fine"
finout<< "fine";

// Are the get and put pointers still the same?
cout<< "finout.tellg()="<< finout.tellg ()<< endl;
cout << "finout.tellp()=" << finout.tellp () << endl;

CIS27 - Programming in C++ 260

VIII - C++ Input/Output & File I/0

51 print file(finout);

52

53 // close the file

54 finout.close() ;

55

56 // reopen the file in input/output/binary mode
57 finout.open("da file",ios base::in|ios base::out|ios::binary);
58

59 // write hey into the file

60 finout<< "hey";

6l

62 print file(finout);

63

64 // try again to write hey into the file

65 finout.seekp (0,io0s::beqg);

66 finout<< "hey";

67 print file(finout);

68

69 // try app mode

70 finout.clear () ;

71 finout.close();

72 finout.open ("da file",ios base::in|ios base::out|ios::app);
73 finout<< "hey";

74

75 print file(finout);

76

77 return 0;

78 '}

79

80

81 wvoid print file(istream& file)

82 {

83 cout<< "file.rdstate="<< file.rdstate() << endl;
84 char buffer[80];

85 file.seekg(0,i0s::beqg);

86 while (file.getline (buffer,sizeof (buffer))) {
87 cout<< buffer << endl;

88 }

89 cout << endl;

90 }

*HEFxxxx Qutput (MS Visual C++ 2008) *AK KKK

file.rdstate=0 (32)
Have a nice day.

Have a great day.

Have a totally excellent day.

finout.tellg
finout.tellp
finout.tellg
finout.tellp

CIS27 - Programming in C++ 261

VIII - C++ Input/Output & File I/0

file.rdstate=0 (51)
Have a fine day.

Have a great day.

Have a totally excellent day.

file.rdstate=7 (62)
Have a fine day.

Have a great day.

Have a totally excellent day.

file.rdstate=7 (67)

file.rdstate=0 (75)
Have a fine day.

Have a great day.

Have a totally excellent day.

hey

kkxkkx Output (GNU g++ 4.32) xxkxxx

file.rdstate=0

Have a nice day.

Have a great day.

Have a totally excellent day.

finout.tellg()=7
finout.tellp()=7
finout.tellg()=1
finout.tellp()=1
file.rdstate=0 (51)
Have a fine day.

Have a great day.

Have a totally excellent day.

file.rdstate=0 (62)
heye a fine day.

Have a great day.

Have a totally excellent day.

file.rdstate=6 (67)

file.rdstate=0 (75)
heye a fine day.

Have a great day.

Have a totally excellent day.

hey

CIS27 - Programming in C++ 262

VIII - C++ Input/Output & File I/0

The following example illustrates binary file 1/0. The example is a bit hokey, but it
demonstrates input-output techniques that might be useful in a database application.

Example 8-12 — File 1/0 — read() and write()

1 // File: ex8-12.cpp - File I/O read() and write()

2

3 #include <fstream>

4 #include <iostream>

5 #include <iomanip>

6 #include <cstdlib>

7 #include <cstring>

8 #include <string>

9 using namespace std;

10

11 class Employee

12 {

13 public:

14 Employee () : age(0), salary(0.f) {}

15 private:

16 char empno[8];

17 char name[32];

18 unsigned short age;

19 float salary;

20 friend istreamé& operator>>(istreamé&, Employee&);
21 friend ostreamé& operator<<(ostreamé&, const Employee&);
22 };

23

24 1istream& operator>>(istreamé& in, Employeeé& E)

25 |

26 in >> E.empno >> E.name >> E.age >> E.salary;

27 return in;

28 1}

29

30 ostream& operator<<(ostreamé& out, const Employeeé& E)
31 |

32 out << setprecision(2) << fixed << showpoint << left;
33 out << setw(8) << E.empno

34 << setw(1l3) << E.name

35 << right << setw(3) << E.age

36 << setw(1l0) << E.salary;

37 return out;

38 }

CIS27 - Programming in C++ 263

VIII - C++ Input/Output & File I/0

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

class EmployeeFile

{

public:
EmployeeFile (string filename = "empfile");
void print(); // Why isn’t this const?
void open for read write();
void close () { File.close(); }
bool operator! () const { return !File.rdstate(); }
private:

string Filename;

fstream File;

friend EmployeeFile& operator>>(EmployeeFile&, Employee&);

friend EmployeeFile& operator<< (EmployeeFileé&, const Employee&);
}i

// constructor opens file in output/binary mode
EmployeeFile: :EmployeeFile (string filename)
Filename (filename), File(filename.c str(),ios::out|ios::binary)
{
}

void EmployeeFile: :print()
{
Employee temp;

// position to the beginning of the file
File.seekg (0, ios base::begq);

// read data from the file and print out each Employee record
while (! (*this>>temp)) {
cout << temp << endl;

}

// clear the File stream state (after reading EOF)
File.clear();

}

void EmployeeFile: :open_ for read write()

{

File.open(Filename.c str(),ios::in | ios::out | ios::binary);
if (File.fail()) {
cerr << "Unable to open Employee file: " << Filename << endl;

exit(-1);
}

EmployeeFile& operator>>(EmployeeFile& EF, Employeeé& E)

{
EF.File.read((char*) &E, sizeof E);
return EF;

CIS27 - Programming in C++ 264

VIII - C++ Input/Output & File I/0

91 EmployeeFile& operator<< (EmployeeFile& EF, const Employee& E)
92 {

93 EF.File.write((char*) &E, sizeof E);
94 return EF;

95 }

96

97 int main()

98 {

99 Employee temp;
100 EmployeeFile EmpFile ("employee.dat");

101

102 for (int 1 = 0; 1i<4; ++1i) |

103 cout << "Enter empno name age salary\n";
104 cin >> temp;

105 EmpFile << temp;

106 }

107

108 // close the file and reopen it in read-write mode
109 EmpFile.close();

110 EmpFile.open for read write();

111

112 EmpFile.print ()

113 return 0;

114 '}

Enter empno name age salary
654321 Joe 35 80000

Enter empno name age salary
642731 Jim 55 85000

Enter empno name age salary
615787 Helen 60 90000

Enter empno name age salary
J00787 Susan 47 50000

654321 Joe 35 80000.00
642731 Jim 55 85000.00
615787 Helen 60 90000.00
J00787 Susan 47 50000.00

v What is the purpose of the char* cast in the file.read() above?

v Why is the EmployeeFile File stream opened by the constructor in write mode, then later
closed and re-opened in read-write mode?

CIS27 - Programming in C++ 265

VIII - C++ Input/Output & File I/0

Example 8-13 - A DOS grep command

The following example is used to create a grep command for DOS. The UNIX grep command is
used to search a file, or a list of files for the existence of a desired target string. This example
was written for DOS, not UNIX. It demonstrates conditional compilation to allow for compiler
differences.

After the program listing, sample compile commands are demonstrated and there is a note about
executing the program under Windows XP.

1 // File: ex8-13.cpp - A grep command for DOS

2

3 #include <fstream>

4 #include <iostream>
5 #include <cstdlib>

6 #include <cstring>

7 using namespace std;
8

9 // The macro _ GNUG 1is set for GNU C++
10 #ifdef GNUG

11 #include <unistd.h> // for access|()

12 {else

13 #include <io.h> // for _access()

14 #endif

15

16 int main(int argc, char* argvl[])

17 |

18 char filename[64],

19 buffer (10247,

20 command[128],

21 tempFilename[9];

22 int lineno,

23 hits = 0,

24 files = 0,

25 system command status;

26 ifstream finl,

27 fin2;

28

29 // Check command-line syntax

30 if (argc !'= 3) {

31 cerr << "Syntax error\ngrep [target text] [target file(s)]
32 \n";

33 exit (-1);

34 }

35

36 // create a temporary file to hold the filenames to be searched
37 strcpy (tempFilename, "tempa") ; // first possible filename
38

39 // The access () or _access () functions are used to status the
40 // existence of a file

CIS27 - Programming in C++ 266

VIII - C++ Input/Output & File I/0

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// I1f you're not using a GNU C++ compiler, use _access()
#ifdef GNUG

while (access (tempFilename,0) == 0 && tempFilename[4] <= 'z'")

// If you're not using a GNU C++ compiler, use _access|()
#else

while (access (tempFilename,0) == 0 && tempFilename[4] <= 'z')
#endif

tempFilename [4]++;

// If you've tried all filenames from "tempa" to "tempz",
// then give up

if (tempFilename[4] > 'z') {
cerr << "Unable to create a temp* file. Please cleanup\n";
exit (-2);

}

// Create the command: "dir /b [filename(s)] > [tempfilename]

strcpy (command, "dir /b ");
strcat (command,argv(2]);
strcat (command,™ > ");

strcat (command, tempFilename) ;

// system() allows you to issue operating system commands
system command status = system(command) ;

// check the status of the system command

if (system command status == -1) {
cerr << "Error with system command: " << command << endl;
exit (-3);

}

// open temporary file (containing names of files to be searched)
finl.open (tempFilename) ;

// Make sure the tempFilename is not empty

if (finl.peek() == EOF) {
cerr << "Error: target file(s) do(es) not exist, dummy\n";
exit (-4);

}

// for each file in tempFilename, search for the target string
while (finl.getline(filename,sizeof (filename))) {

// open the next file to be searched
fin2.open(filename) ;

// increment file count
files++;

// initialize line counter
lineno = 0;

CIS27 - Programming in C++ 267

VIII - C++ Input/Output & File I/0

93

94 // clear errors in fin2 stream

95 fin2.clear () ;

96

97 // position at the beginning of the file to be searched
98 fin2.seekg (0L, ios:: beqg);

99

100 // read each line from the file into buffer

101 while (fin2.getline (buffer,sizeof (buffer))) {
102

103 // increment line counter

104 lineno++;

105

106 // does buffer contains the target string?
107 if (strstr(buffer,argvi(l])) {

108

109 // If so, increment hit counter

110 hits++;

111

112 // display filename, line count, contents of line
113 cout << filename << '[' << lineno << "] "
114 << buffer << '\n';

115 }

116 }

117

118 // close the file to be searched

119 fin2.close () ;

120 }

121

122 // close the temporary file

123 finl.close();

124

125 // Print summary information

126 cout << "Found " << hits << " occurrence(s) 1n " << files
127 << " file(s)\n";

128

129 // create the DOS command to erase the tempFilename

130 strcpy (command, "erase ") ;

131 strcat (command, tempFilename) ;

132

133 // Issue system erase command

134 system command status = system(command) ;

135

136 // status system command

137 if (system command status == -1) {

138 cerr << "Error with system command: " << command << endl;
139 exit (-5);

140 }

141

142 return 0;

143 '}

CIS27 - Programming in C++ 268

VIII - C++ Input/Output & File I/0

CIS27 - Programming in C++ 269

VIII - C++ Input/Output & File I/0

Compile Commands

Microsoft Visual C++ 2008

cl ex8-13.cpp —-EHsc

Note: executable name is ex8-13.exe

GNU gxx version 3.10b (for DOS)

g++ ex8-13.cpp -o grep.exe -Wall

kAFxxxx Sample Program Execution xEARAx

C:\deanza\examples>grep system *.cpp

ex8-13.cpp[25] system command status;
ex8-13.cpp[(6l] // system() allows you to issue operating system commands
ex8-13.cppl[62] system command status = system(command) ;

ex8-13.cpp[64] // check the status of the system command

ex8-13.cpp[65] if (system command status == -1) {

ex8-13.cpp[66] cerr << "Error with system command: " << command <<
endl

ex8-13.cpp[128] // Issue system erase command

ex8-13.cpp[l29] system command status = system(command) ;
ex8-13.cpp[131] // status system command

ex8-13.cpp[l32] if (system command status == -1) {
ex8-13.cpp[1l33] cerr << "Error with system command: " <<
command

<< endl;

all2htm.cpp[65] status = system(command) ;

Found 12 occurrence(s) in 96 file(s)

C:\djgpp\include> \deanza\examples\grep access *.h

dpmi.h[148] int dpmi get descriptor access rights(int _selector);

/* LAR instruction */
dpmi.h[149] int dpmi set descriptor access rights(int selector, int
_rights);

/* DPMI 0.9 AX=0009 */
io0.h[37] #define sopen (path, access, shflag, mode) \

io0.h[38] open ((path), (access) | (shflag), (mode))
unistd.h[76] int access (const char * path, int amode);
unistd.h[125] /* additional access () checks */

Found 6 occurrence(s) in 60 file(s)

Note: this next sample run has quoted arguments for the command. The first argument allows
you to search for more than one word in the file. The second argument is quoted, because the
GNU executable version wanted wildcard arguments quoted.

C:\deanza\examples>grep "virtual function" "* *"

CIS27 - Programming in C++ 270

VIII - C++ Input/Output & File I/0

EX7-15.CPP[33] virtual double area(void) const = 0; // pure
vir

tual function

EX7-15.CPP[34] virtual double girth(void) const = 0; // pure virtual
function

Found 2 occurrence(s) in 124 file(s)

CIS27 - Programming in C++ 271

Appendix A - Assignments

Appendix A: Exercises
Exercise #1

Use the Date struct, the MonthName array, the function prototypes, the main() and the output
below to complete the following program. Make sure that you use C++ ANSI standard header
files. Try to match the output exactly. Turn in your entire program and the output.

struct Date

{
unsigned short month;
unsigned short day;
unsigned short year;

const char* MonthName[1l2] = {"January","February","March","April", "May",
"June", "July", "August", "September", "October", "November", "December"};

void InputDate (Date*);
void Printl (Date);
void Print2 (Date) ;
void Print3 (Date);

int main ()
{
Date FirstDay, FinalDay, HoliDay;
InputDate (&FirstDay) ;
InputDate (&FinalDay) ;
InputDate (&HoliDay) ;
Printl (FirstDay) ;
Print2 (FirstDay)
Print3 (FirstDay) ;
Printl (FinalDay) ;
)
)

’

’

Print2 (FinalDay
Print3 (FinalDay
Printl (HoliDay) ;
Print2 (HoliDay) ;
Print3 (HoliDay) ;
return 0;

’

~ e~~~ o~~~ —~

}
*kkkkk Program Output *kkkkk

Enter month day year (separated by spaces) => 1 13 2005
Enter month day year (separated by spaces) => 1 1 2005
Enter month day year (separated by spaces) => 12 14 2005
01/13/05

January 13, 2005

13JANOS

01/01/05

January 1, 2005

01JANOS5

12/14/05

December 14, 2005

14DECO5

CIS27 - Programming in C++ 272

Appendix A - Assignments

CIS27 - Programming in C++ 273

Appendix A - Assignments

Exercise #2

Write a complete C++ program that makes use of the student struct and main() shown below.
The program should read in the student data from the keyboard, calculate the final grade and
print the student data for two (or more) test cases.

Your program should meet the following requirements:

e Use the student struct with the indicated members.

e You should write at least four functions, getStudentData(), checkStudentData(),
calculateFinalGrade(), and printStudentData(). Each of these functions should take a student
struct argument, passed by reference.

e Your getStudentData() function should allocate memory dynamically for the last name. This
memory should be released in main() before your program ends.

e checkStudentData() should be called by getStudentData(). It should verify the accuracy of
the entered data. The ssn should be 9 numeric digits, the labs grades® must have a value
between 0 and 25, the midterm between 0 and ??*, and the final between 0 and ???%. If the
entered data is incorrect, you may exit the program or ask the user to re-enter the data.

e The calculateFinalGrade() function should reflect the policies used to determine points and
the final grade for the course. Remember to discard the lowest lab grade, but not the last lab.

e Your program should produce output similar to that shown on the next page. You must
submit your output along with a program listing.

e Do not include a disk or email your solution.

struct student
{
char* lastname;
char ssn[10];
int lab grade[NumLabGrades!];
int midterm;
int final;
int total points;
char final grade;

bi

int main (void)

{
student Me, You;
getStudentData (Me) ;
calculateFinalGrade (Me) ;

getStudentData (You) ;
calculateFinalGrade (You) ;
printStudentData (Me) ;
printStudentData (You) ;

<- something goes here

6 Use the values stated on the course syllabus

CIS27 - Programming in C++ 274

Appendix A - Assignments

return 0;

LR I e S b I S b I S b I S 2 I S b I S db I S 2] Sample Run #l KAKAKAKAARAKAA A A AR AR A A XA A XA A XK AKXk %k

Enter the last name => Smith

Enter social security number => 123456789

Enter 9 lab grades (separated by a space) => 25 20 18 20 19 18 16 22 19
Enter midterm grade => 65

Enter final grade => 114

Thanks!

Enter the last name => Nguyen

Enter social security number => 987654321

Enter 9 lab grades (separated by a space) => 19 18 17 16 15 14 13 12 11
Enter midterm grade => 55

Enter final grade => 77

Thanks!

Name: Smith

SSN: 123456789

Lab grades: 25 20 18 20 19 18 16 22 19
Midterm: 65

Final: 114
Total Points: 2?27 <- you figure this out
Final grade: ? <- you figure this out

Name: Nguyen

SSN: 987654321

Lab grades: 19 18 17 16 15 14 13 12 11
Midterm: 55

Final: 77
Total Points: ?2°?27? <- you figure this out
Final grade: ? <- you figure this out

KAk ARAAIAA XA A XA A XA A XA A XA KX KK Sample Run #2 KAAKKAAIAA KA A KA XK A XA AR A A XA A KKK

Enter the last name => Doe

Enter social security number => 345678901

Enter #! lab grades (separated by a space) => 11 12 11 12 11 12 .!
Enter midterm grade => 81

Enter final grade => 88

Thanks!

Invalid midterm 81. Exiting...

CIS27 - Programming in C++ 275

Appendix A - Assignments

Exercise #3

This assignment is a continuation of the exercise 2. The requirements for this assignment are the
same as exercise 2. You are to convert the student struct to a class and make the four functions,
getStudentData(), checkStudentData(), calculateFinalGrade(), and printStudentData(), members
of your student class.

Make sure you complete the following steps for this assignment:

Convert student to a class. The data members should be private. The three functions,
getStudentData(), calculateFinalGrade(), and printStudentData(), should be public members
functions. checkStudentData() should be private.

Add a fifth function to the class - void DeleteName(void). This function should handle the
delete for the lasthame member.

printStudentData() should be a const member function.
Make DeleteName() an implicit inline function.

In main(), prompt the user for the number of students to process. Dynamically allocate the
memory for the student objects.

Run your code with at least 4 student objects that demonstrate adequate testing of your
program.

CIS27 - Programming in C++ 276

Appendix A - Assignments

Exercise #4

Create a date class consisting of:
e 3 private unsigned int data members: month, day, and year.
e 5 constructors, as described below
e adestructor, as described below
e aprint() function
e an increment() function

Use the following global variables:

const char* const Months[12] = {"January", "February", "March","April", "May",
"June","July", "August", "September", "October", "November", "December"};
const unsigned CurrentYear = 2009;

// DaysPerMonth - non-const so that changes can be made for leap year
unsigned DaysPerMonth([13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};
Constructors:

e The default constructor should look something like this:

// The default constructor returns the current system date
date::date () {
time t timer = time(0);
tm* NOW = localtime (&timer) ;
month = NOW->tm mon+l; // NOW->tm mon is current month#-1
day = NOW->tm mday;
year = NOW->tm year + 1900;

e Thetime_t and tm types and the time() and localtime() functions are defined in the ANSI

C header file, ctime. Review the documentation for these types and functions.

e The second constructor should have 3 unsigned arguments, the third argument is default
= CurrentYear. The 3 arguments should be assigned to the month, day, and year
members respectively. Observe the assumption listed below concerning 2-digit years.
This constructor should be able to take a 2-digit or a 4-digit year.

e The third constructor should take a char* argument of the form “mmddyy” or
“mm/dd/yy”. The argument should be parsed and respective values assigned to the
month, day, and year members. Observe the assumption listed below concerning 2-digit
years.

e The fourth constructor should take a single unsigned int argument, the day of the year for

the current year. For example, date(25) is January 25, 2009 and date(364) is December
30, 2009.
e The fifth constructor is the copy constructor.

The destructor should call the print() function to display the date that is being destructed.

The print() function, with a default int argument, should display dates with a format mm/dd/yy or
Month d, yyyy or ddMONyy, depending on the value of the argument. Note the uppercase in the

3" format. Note: mm/dd/yy is the default format.

CIS27 - Programming in C++ 277

Appendix A - Assignments

The increment() function should add 1 day to any date. This function must work for leap years.
The rules for leap years are:
e A leap year occurs in every year that can be divided evenly by four, except the years that
mark the even hundreds, such as 1500.

e The only century years that are leap years are those that can be divided evenly by 400,
such as 1600 and 2000.

Assumptions:
e For the constructors, any 2-digit reference to a year is to be interpreted as follows: 1)

assume any two-digit year reference < 50 refers to years between 2000 and 2049. 2)
assume any two-digit year reference >= 50 refers to years between 1950 and 1999. For
example, 02/04/94 means February 4, 1994, and 02/04/49 means February 4, 2049.

e Assume date values for month, day, year, and day of the year are correct. You do not
have to perform error checking on these values.

Use this main() to test your program and redirect your output to a file. Turn in the output
file with your program listing.

int main ()
{

int 1i;

date D1;

date D2(9,19,00);
date D3(7,15,49);
date D4(1,10);
date D5("010148");
date D6("10/01/59") ;
date D7(2,26,1936);
date D8(2,26,2000) ;
date D9(2,26,1900) ;
date D10(2 26 1999);

date D11 (2

date D12(364

date D13 (D10)

Dl.print(); Dl print (1); Dl.print(2);
D2.print(); D2.print(l); D2.print(2);
D3.print (); D3.print(l); D3.print(2);
D4.print (); D4.print(l); D4.print(2);
D5.print(); DS5.print(l); DS5.print(2);
D6.print(); D6.print(l); D6.print(2);
D7.print(); D7.print(l); D7.print(2);
D8.print (); D8.print(l); D8.print(2);
DY9.print(); D9.print(l); DY9.print(2);
D10.print(); D10.print(l); D10.print(2);
Dl1l.print(); Dll.print(1l); Dll.print(2);
D12.print(); D12.print(l); Dl12.print(2);
D13.print(); D13.print(l); D13.print(2);

cout << "5 days after "; D7.print(1l);

for (i = 1; i <= 5; i++) D7.increment(); D7.print(1l);
cout << "5 days after "; D8.print(1l);

for (i = 1; i <= 5; i++) D8.increment(); D8.print(1l);

CIS27 - Programming in C++ 278

Appendix A - Assignments

cout << "5 days after "; D9.print(1l);
for (i = 1; i <= 5; i++) D9.increment(); D9.print(1l);

cout << "5 days after "; DI1O0.
for (i = 1; i <= 5; i++) D10.
cout << "35 days after "; DI1.
for (1 = 1; 1 <= 35; 1i++) D1.
return 0;

}

kkkkkk Qutput Krkkkkx

05/01/09

May 1, 2009
01MAYO09

09/19/00

September 19, 2000
19SEPOO

07/15/49

July 15, 2049
15JUL49

01/10/02

January 10, 2002
10JANO2

01/01/48

January 1, 2048
01JAN48

10/01/59

October 1, 1959
010CT59

02/26/36

February 26, 1936
26FEB36

02/26/00

February 26, 2000
26FEBROO

02/26/00

February 26, 1900
26FEBROO

02/26/99

February 26, 1999
26FEB99

01/25/02

January 25, 2002
25JAN02

12/30/02

December 30, 2002
30DECO02

02/26/99

February 26, 1999
26FEB99

5 days after February 26, 1936
March 2, 1936

5 days after February 26, 2000
March ?, 2000

5 days after February 26, 1900
March ?, 1900

5 days after February 26, 1999

print (1) ;
increment (); D10.print(1l);
print (1) ;
increment (); Dl.print(1);

€<- today’s date

<- you figure it out
<- you figure it out

€<- you figure it out

CIS27 - Programming in C++

279

Appendix A - Assignments

March ?, 1999 €<- you figure it out
35 days after May 1, 2009

? ?, 2009

date destructed: 02/26/99

date destructed: 12/30/02

date destructed: 01/25/02

date destructed: 03/03/99

CIS27 - Programming in C++ 280

Appendix A - Assignments

Exercise #5

This assignment will give you practice writing constructors and working with a multiple file
application. Use the Point and Line header and source files from example 4-12 to complete this
assignment. You are to create a Circle class consisting of:

Two data members, a Point representing the center of the Circle and a double for the

radius.

A print() member function that displays Circle data as shown in the output on the next

page. Your output should have the exact format as shown.

The following ten Circle constructor functions:

1. A default constructor the creates a unit Circle at the origin. That is, center (0,0) and
radius 1.

2. A constructor with one double argument. The argument should be used for the
radius. The center is assumed to be at the origin.

3. A constructor with two double arguments. The arguments should be used for x-y
coordinates of the center. The radius is assumed to be 1.

4. A constructor with a Point and a double argument. The Point should be assigned to
the center and the double to the radius. Pass the Point by reference to const.

5. A constructor with three double arguments. The first two doubles should be used for
the x-y coordinates of the center. The third double represents the radius.

6. A constructor with two Point arguments. The first Point is the center, and the second
represents a Point on the circle. Both points should be passed by reference (to const).

7. A constructor with a Point and a Line argument. The Point is the center. The Circle
is tangent to the line. Assume that the Point does not lie on the Line. Pass the
arguments by reference.

8. A constructor with one Line argument. The Line represents the diameter of the
Circle.

9. A constructor with a Circle argument and a double argument. The Circle will be
concentric to the argument’s Circle with the double radius.

10. A copy constructor.

Additional requirements:

Use the main() provided on the next page.

Use the files ex4-12p.h, ex4-12p.cpp, ex4-12lh, and ex4-12l.cpp for the Point and Line
class definitions and member functions.

Create a multi-file application. Put your Circle class definition in a separate header file
and the Circle member function definitions in a separate source file.

Turn in only the Circle header file, the Circle member function source file, main() as a
separate source file and the program output.

Use constructor initializers in every constructor, even though it is not required. This will
help you become familiar with the syntax.

Use this main() for the program.

CIS27 - Programming in C++ 281

Appendix A - Assignments

int main (void)

{
Point P(2.3,1.3), Q(3.4,4.5), R(3.1,4.9);
Line L(P,Q);
Circle C1;
Cl.print();
Circle C2(3.5);
C2.print();
Circle C3(2.6,3.5);
C3.print();
Circle C4(P,5.5);
Cd.print();
Circle C5(1.1,2.3,5.8);
CS.print();
Circle C6(P,Q);
Co.print();
Circle C7(R,L);
C7.print () ;
Circle C8(L);
C8.print () ;
Circle C9(C8,5.0);
CY.print();
Circle C10(C9);
ClO0.print () ;

return 0;

Your output should look like this:

center=(0,0) radius=1
center=(0,0) radius=3.5
center=(2.6,3.5) radius=1
center=(?,?) radius=?
center=(?,?) radius=?
center=(?,?) radius=?
center=(?,?) radius=?
center=(?,?) radius=?
center=(?,?) radius=?
center=(?,?) radius=?

CIS27 - Programming in C++ 282

Appendix A - Assignments

Exercise #6

This assignment will give you practice writing constructors and destructors, static data members
and static member functions, and friend functions. You are to create a Dictionary application to
store words. You will allocate memory dynamically to store each word. Before you store each
word, you need to check in the Dictionary to make sure that the word is not already in the
Dictionary. Follow all directions listed below.

Create a Word class with the following:
1. The class should contain two data members:
e achar* data member, ptrWord.
e astatic int member, WordCount that contains the number of words added to the
Dictionary.

2. Three constructors:

e A default constructor that allocates memory for a one element char array, initialized to
“\0’. (this will not get used in your final program)

e A constructor with a const char* argument. This constructor should allocate memory
dynamically to store the argument. This is the constructor that will be used to store your
words.

e A copy constructor. (this will not get used in your final program)

A destructor to perform the necessary release of memory.

4. A print() function the displays the word. It should be a const member function and define it

inline.

Another const member function, GetWord() that returns the char*, ptrWword.

A static member function, GetWordCount() that returns the WordCount.

w

oo

reate a Dictionary class with the following:

One data member, words, that is a 100 element array of pointers to Word.

A default constructor that initializes the 100 Word pointers to 0.

A destructor that releases memory for each Word added to the Dictionary.

A const member function, FindWord(char*), that returns a pointer to the Word if it is in the

Dictionary, otherwise a null pointer.
5. A function, AddWord(char¥*), that is used to add words to the Dictionary. AddWord
should allocate memory dynamically for each word to be added. (Hint: a Word constructor
should help you out here) Use the FindWord() function to make sure that you are not
adding a word into the Dictionary that is already there. AddWord should return an int, 1, if
the word is successfully added, otherwise 0.
A print() const member function that prints out all words stored in the Dictionary.
7. A friend function, void print(const Dictionary&, int n), that prints out the nth word in the
Dictionary.

roOdMEO

o

Use the following main() to test your program:

int main (void)

{
Dictionary Webster;
int i;
char temp[25];

CIS27 - Programming in C++ 283

Appendix A - Assignments

cout << "Enter 10 words separated by whitespace\n";
for (1 = 0; 1 < 10; 1i++) {
cin >> temp;
Webster.AddWord (temp) ;
}
Webster.print () ;
cout << "The fifth word is " ; print (Webster,4);
cout << "There are " <<Word::GetWordCount ()<<" words in the Dictionary\n";
return 0;

The output should look something like this:

Enter 10 words separated by whitespace
dog cat bird mouse goat horse dog pig fish Dog
* Error: duplicate word: dog

The Dictionary contains:

dog

cat

bird

mouse

goat

horse

pig

fish

Dog

The fifth word is goat

There are 9 words in the Dictionary

Extra Credit (1 point each)
Do not attempt this unless you first complete the required assignment and totally understand
what you did.

1. Modify the Dictionary print() function to print the words out in sorted order.

2. Implement the Dictionary class as a linked list. The Word class will need to be modified to
add a Word* member. You will have to modify/add other Word class member functions to
treat it as a "node". The main() function should not have to be changed. The Dictionary class
member function arguments should stay the same, but the code should change.

Use Example 5-9 as a guide for this assignment.

CIS27 - Programming in C++ 284

Appendix A - Assignments

Exercise #7

This assignment will give you practice working with classes, constructors, static data member,
static member functions, and friend functions. The goal of this assignment is to create a partial
model of a population system, emulating the aging and dying of a population, but unfortunately
not the birth process. But, maybe that’s fortunate for the programmer

Program reqguirements:

e Create the three classes described below.

e Use the main() function included.

e Your output should look like that shown below.

e Your program must be divided into multiple files. Each class should be defined in a separate
header file and the member functions for each class should be in a separate source file.
main() should also be in a separate file. Your program should consist of at least 7 files. Print
each file on a separate page.

Class Descriptions

The date class is used to represent calendar dates. As a minimum, the class must contain:

e 3unsigned int data members to represent month, day, and year

e adefault constructor (use the same one from assignment 4)

e aconstructor that takes 3 unsigned ints as arguments

e an increment function that adds 1 day to the date (you can use the same one from assignment

3. For determining ages, you can assume that a year is 365.25 days long.

a display() function that displays the date in the mm/dd/yy format

e alet time_pass() function that adds a random number of days to a date. The random
number should be between 1 and 365. You will be using this function to add days to the
(global) TODAY date. Hint: you might use the random number to call the increment()
function repeatedly.

e Declare the human class as a friend of the date class.

e Declare the function, int difference_between 2 dates(date,date) as a friend of the date
class.

The human class must contain at least:
e 3 data members:

char name[32]
date birthday
bool alive
e 2 static data members
static human* oldest_human
static unsigned long number_of_living_humans
a constructor: human(const char* n,const date& b)

necessary accessor functions

a function, age() that returns a human’s age in years
a die() function (you know what that means)

a display() function

CIS27 - Programming in C++ 285

Appendix A - Assignments

a static member function that assigns the appropriate human* to the oldest_human.
a static member function that returns the number_of_living_humans
Declare the function void population::display() const as a friend of the human class.

The population class must contain:

Two data members:

e human** people
e const unsigned long original_size
A private member function: determine_oldest() that “sets” the oldest_human

A constructor

A destructor

A display() function

An examine_population() function that takes a look at the population, calls the following
roll_the_dice() function for each “living” human. If roll_the_dice() returns a number
greater than .5, the human should “die”.

float roll the_dice (unsigned short age)

{

}

return (float) age* (rand()%100)/10000.;

Assumptions

e All humans were "born" in the last century.

e Use the difference_between_2_dates() function so that it always returns a positive
value. That is, you should always subtract the older date from the newer date.

e Use a population size of 20 for the final testing of your program.

Hints and Suggestions

If you are new to working with multiple files, keep your program as one file until you get it

working, then try to split it into multiple files.

Declare TODAY as a global variable. To do this, enter:

date TODAY;,

in your main() source file and declare it as an extern in the date header file, like this:

extern date TODAY,

Create a global array of names that you can use in the population constructor, like this:
char* NAMES[] = {"Fred","Sam","Sally","George","Sue","Mary","Bill",...};

Do not work with a population size of 20 until you are sure that your program is working.

Use a small population, like 4 or 5.

CIS27 - Programming in C++ 286

Appendix A - Assignments

The main() function

int main ()

{

srand (time (0)) ; // seed the random number generator
population World (POPULATION SIZE);

cout << "Today is ";

TODAY.display () ;

cout << endl;

World.display () ;

// let time pass until half of the world's population dies
do
{
TODAY.let time pass();
World.examine population(); // record deaths, find oldest
} while (human::get number of living humans() > POPULATION_SIZE/Z);

cout << "Today is ";
TODAY .display () ;
cout << endl;
World.display () ;
return 0;

Sample Output

Today is 11/22/03

Allen was born on 9/15/04 is 99
Catherine was born on 11/1/62 is 41
Naihui was born on 10/16/56 is 47
Gayatri was born on 9/26/24 is 79
Bin was born on 5/12/28 is 75
Evan was born on 5/2/82 is 21
Sandy was born on 3/8/50 is 53
Sridevi was born on 4/26/85 is 18
Tanya was born on 3/26/32 is 71
Jing was born on 9/18/25 is 78
Haiying was born on 7/24/75 is 28
Rose was born on 1/21/25 is 78
Nisha was born on 5/8/72 is 31
Hnin was born on 3/14/68 is 35
Adeline was born on 8/17/57 is 46
Chen Wei was born on 8/8/19 is 84
Joe was born on 7/6/86 is 17

Bob was born on 11/26/33 is 69
Mary was born on 7/8/41 is 62

Sue was born on 4/7/80 is 23

The oldest living person, Allen is 99 years old.

4/9/04 Allen died at the age of 99
4/9/04 Chen Wei died at the age of 84
4/9/04 Bob died at the age of 70
9/16/04 Sandy died at the age of 54
9/16/04 Tanya died at the age of 72

CIS27 - Programming in C++ 287

Appendix A - Assignments

9/16/04 Rose died at the age of 79
9/16/04 Mary died at the age of 63
1/10/05 Bin died at the age of 76
8/5/05 Gayatri died at the age of 80
8/5/05 Jing died at the age of 79
Today is 8/5/05

Catherine was born on 11/1/62 is 42
Naihui was born on 10/16/56 is 48
Evan was born on 5/2/82 is 23
Sridevi was born on 4/26/85 is 20
Haiying was born on 7/24/75 is 30
Nisha was born on 5/8/72 is 33

Hnin was born on 3/14/68 is 37
Adeline was born on 8/17/57 is 47
Joe was born on 7/6/86 is 19

Sue was born on 4/7/80 is 25

The oldest living person, Catherine is 42 years old.

CIS27 - Programming in C++

288

Appendix A - Assignments

Exercise #8

This assignment will give you practice writing constructors and destructors, static data members,
static member functions, friend functions, and overloaded operator functions. The purpose of the
program is to write a simple game involving dice. You are to create the three classes described
below. Use the main() provided. The sample output should give you additional information
about the program requirements.

Create a Die class with the following specifications:

1. One private data member, an unsigned short, value.

2. A private member functions, roll() that generates a random number and assigns it to value.
You can use the expression, rand() % 6 + 1, to generate the random number.

3. Add an overloaded operator < private member function that can be used to compare the
value of two Die objects.

4. Name the class Dice as a friend of the Die class. Remember to forward declare the Dice
class.

5. Reminder: all members of the Die class are private. Access must be controlled through the
Dice class.

Create a Dice class with the following specifications:

1. One data member, dice, a five element array of Die.

2. Arroll() function that calls the Die roll() to assign values to the dice array. This function

should call the following sort() function.

A private member function sort() that will sort the dice array.

A min() function that returns the minimum of the dice array.

A sum() function that returns the sum of the dice array.

A max() function that returns the maximum of the dice array.

A average() function that returns the average of the dice array, rounded to the nearest

integer.

A median() function that returns the median of the dice array.

9. A averageOfHighAndLow() function that returns the average of the maximum and
minimum values of the dice array. “Round up” this average.. For example, if the high is 6
and the low is 1, your function should return 4 (that’s 3.5 rounded up).

Nookw

®

The min(), sum(), max(), average(), median() and averageOfHighAndLow() functions
should return an unsigned short.

10. An overloaded! Operator that prints the value of the 5 dice and the points for the roll.

11. An overloaded+ operator that can be used to determine the point value of the dice array.
The points are equal to the average + median + averageOfHighAndLow for the roll of the
dice.

Create a Player class with the following specifications:

1. Private data members, char* name and unsigned short score.

2. Two static unsigned short data members, NumberOfPlayers and
PlayerNumberWhoseTurnltls.

3. A constructor and destructor.

CIS27 - Programming in C++ 289

Appendix A - Assignments

ok~

8.
9.

Two accessor functions, getName() and getScore() to return the name and the score.

A roll() function that calls the Dice roll(), prints the value of the dice (hint: use the!
operator of the Dice class) and returns the points for the roll(hint: use the Dice overloaded
operator+).

A takeTurn() function that calls the roll() function, adds that turns points to the score and
returns the score.

A static member function, whoseTurnlslt(), that returns the
PlayerNumberWhoseTurnltls.

A static member function, nextPlayer(), that manages the PlayerNumberWhoseTurnltls.
A static member function, HowManyPlayers() that returns the NumberOfPlayers.

Write one non-class member function, printScores() that prints out the player names and scores
as shown the program output. It should have a Player* argument.

Additional requirements:

1.
2.
3.

The game ends when one player scores 100 points.

Try to match the program output, except for the random points and scores.

Your program should use every function and data member listed. You should “reuse” alot of
code.

Use this main():

int main (void) {

Dice Lucky;
Player Beatles[4];
unsigned short PlayerScore = 0;
printScores (Beatles) ;
while (PlayerScore < 100) {
Player::nextPlayer () ;
PlayerScore=Beatles[Player::whoseTurnIsIt()].takeTurn (Lucky);
printScores (Beatles) ;
}
cout << "The winner is "
<< Beatles[Player::whoseTurnIsIt ()] .getName () << endl;
return 0;

Here is the program output:

Enter player name => John
Enter player name => Paul
Enter player name => George
Enter player name => Ringo

Scores: John 0 Scores: Paul O Scores: George 0 Scores: Ringo O

John, you rolled 1 3 55 6 - that's 13 points
Scores: John 13 Scores: Paul 0 Scores: George 0 Scores: Ringo 0

Paul, you rolled 1 4 5 5 5 - that's 12 points
Scores: John 13 Scores: Paul 12 Scores: George 0 Scores: Ringo O
George, you rolled 1 2 3 4 4 - that's 9 points

Scores: John 13 Scores: Paul 12 Scores: George 9 Scores: Ringo 0

CIS27 - Programming in C++ 290

Appendix A - Assignments

Ringo, you rolled 1 2 2 4 5 - that's 8 points

Scores: John 13 Scores: Paul 12 Scores: George 9 Scores: Ringo 8
John, you rolled 1 2 3 3 4 - that's 9 points

Scores: John 22 Scores: Paul 12 Scores: George 9 Scores: Ringo 8
Paul, you rolled 2 3 4 6 6 - that's 12 points

Scores: John 22 Scores: Paul 24 Scores: George 9 Scores: Ringo 8
George, you rolled 2 3 3 4 6 - that's 11 points

Scores: John 22 Scores: Paul 24 Scores: George 20 Scores: Ringo 8
Ringo, you rolled 1 2 3 5 6 - that's 10 points

Scores: John 22 Scores: Paul 24 Scores: George 20 Scores: Ringo 18
John, you rolled 1 2 3 3 4 - that's 9 points

Scores: John 31 Scores: Paul 24 Scores: George 20 Scores: Ringo 18
Paul, you rolled 2 2 3 3 3 - that's 9 points

Scores: John 31 Scores: Paul 33 Scores: George 20 Scores: Ringo 18
George, you rolled 2 3 3 6 6 - that's 11 points

Scores: John 31 Scores: Paul 33 Scores: George 31 Scores: Ringo 18
Ringo, you rolled 1 2 4 6 6 - that's 12 points

Scores: John 31 Scores: Paul 33 Scores: George 31 Scores: Ringo 30
John, you rolled 1 2 3 4 5 - that's 9 points

Scores: John 40 Scores: Paul 33 Scores: George 31 Scores: Ringo 30
Paul, you rolled 1 2 3 4 5 - that's 9 points

Scores: John 40 Scores: Paul 42 Scores: George 31 Scores: Ringo 30
George, you rolled 1 2 2 4 6 - that's 9 points

Scores: John 98 Scores: Paul 99 Scores: George 91 Scores: Ringo 87
Ringo, you rolled 1 2 4 4 6 - that's 11 points

Scores: John 98 Scores: Paul 99 Scores: George 91 Scores: Ringo 98
John, you rolled 2 2 3 4 5 - that's 10 points

Scores: John 108 Scores: Paul 99 Scores: George 91 Scores: Ringo 98

The winner is John

CIS27 - Programming in C++

291

Appendix A - Assignments

Exercise #9

Create a Money class consisting of an unsigned int and an unsigned short data member, dollars
and cents. You may assume that all money values are non-negative. Add the following member
functions:

1.

w

10.

11.

A constructor with two default arguments, an unsigned int and an unsigned short. The
arguments should initialize the dollars and cents members. Since both arguments have
default values (both 0), this constructor also serves as a default constructor.

A constructor with a double argument. The double must be used to initialize both the dollars
and cents. For example, an argument of 1.75 should assign 1 to the dollars and 75 to the
cents. Round off cents to the second decimal place, so 5.55555 would set the dollars to 5 and
the cents to 56.

A copy constructor.

An overloaded !(unary) operator that serves as a print function. It should print the dollars
and cents with a leading dollar sign and a decimal point separating the dollars and cents.
Make sure you are able to print the following values: $1.03, $10.00, $0.01, $1234.56, and
$0.00.

An overloaded + (unary) operator that “reduces” Money. For example, if you passed 5 and
150 into the first constructor, you would want to use this function to change the Money
object to have dollars = 6 and cents = 50. This function should return Money by reference.
An overloaded < (binary) operator that tests two Money objects to see if the first is less than
the second. This function should return a bool.

An overloaded == (binary) operator that tests two Money objects to see if the first is equal to
the second. This function should return a bool.

An overloaded + (binary) operator that adds two Money objects and returns the sum by
value(Money). Make sure your logic can handle $2.56+$5.67 and $5.63+%$0.37.

An overloaded - (binary) operator that subtracts two Money objects and returns the
difference. It should return a Money by value. If you try to subtract a larger Money from a
smaller one, print an error message and have the function return $0.00. (0 dollars and 0
cents).

An overloaded * (binary) operator with a double argument. This permits you to multiple a
Money object by a double, For example, $4.29*67.3. It should return a Money by value.
An overloaded += operator that adds more Money to a Money object and returns the result
by reference. For example, M1 += M2; (this should change M1).

Divide your final program into three files: a header file for your Money class, a source file for
your Money methods, and another source file for main(). Write you own main() and thoroughly
test all functions. Make sure your main() demonstrates calls to each member function.

CIS27 - Programming in C++ 292

Appendix A - Assignments

Exercise #10

This assignment will give you practice with overloaded operator functions.

Create a Date class to represent calendar dates.

The class should contain the following members:

e Three unsigned short data members to represent day, month, and year.

e A static const unsigned short 12-element array containing the number of days in each month.

e A constructor that initializes the three unsigned short members.

It should contain the following overloaded operator member functions:

1. A operator that prints a Date object using the format mm/dd/yy.

2. A prefix ++ operator that adds a day to a Date object. It should return the object by
reference.

3. A postfix ++ operator that adds a day to a Date object. It should return the object by value.

4. A prefix -- operator that subtracts a day from a Date object. It should return the object by
reference.

5. A binary + operator with an unsigned short argument. This function should add a number of
days to a date object. Use call(s) to the prefix ++ operator in your function definition. It
should return a Date object by value.

6. A binary - operator with an unsigned short argument. This function should subtract a number
of days from a date object. Use call(s) to the prefix -- operator in your function definition. It
should return a Date object by value.

7. A +=operator with with an unsigned short argument. This function should add a number of
days to a date object. Use call(s) to the prefix ++ operator in your function definition. It
should return a Date object by reference.

8. A == operator that determines if two Date objects are equal. This function should return a
bool.

9. A !=operator that determines if two Date objects are not equal. This function should return a
bool.

10. A > operator that determines if the “current” Date object is greater than another Date object.
One Date object is greater than another Date object if it occurs after the other object. For
example, “03/15/02” > *“12/25/01”. 'This function should return a bool.

11. A binary — operator with a const Date& argument. This function should determine the
number of days between two Dates. The function should return an int. For example,
“01/03/02” —“12/30/01” =» 4 and “12/30/01” — “01/03/02” =» -4.

Appropriate member functions should be defined as const member functions.

Assumptions
It is not necessary to make leap year corrections for this assignment. Assume that February

always has 28 days and that a year is exactly 365 days.
A year value between 0 and 49 represents the years 2000 to 2049. A value between 50 and 99
represents the years 1950 to 1999.

Write a main() that demonstrates each of the overloaded member functions. Your output should
demonstrate the validity of each function.

CIS27 - Programming in C++ 293

Appendix A - Assignments

Exercise #11

This assignment will give you practice with inheritance and polymorphism.

Create the following classes:

GeometricObject:

point

line

circle

triangle

This is the base class for the other four classes. It should have two
protected data members, x and y (coordinates). The class should have the
following member functions:

GeometricObject() // ctor

getX() /I accessor function
getY() Il accessor function
print()

describeYourself()

length()

area()

All member functions should be const member functions, except the
constructor. describeYourself(), length(), and area() functions should be
pure virtual functions. The print() function should display the line of
output shown below, like

Is derived from GeometricObject and has no data members. Its length()
and area() functions should return 0.0.

Is also derived from GeometricObject and has two point data members, pl
and p2. Its constructor must initialize the X,y members of the
GeometricObject class. The (x,y) coordinates of a line should be the
midpoint of p1 and p2 (take the average of the x coordinates and the
average of the y coordinates). Its area() function should return 0.0, but the
length() function should return the distance between the two points. Use
the formula:

d= 7\ /(pLx-p2x)? + (pLy - p2.y)

Is also derived from GeometricObject and has one data member, a double,
radius. The constructor should have a point argument and a double
argument. The point argument is used to initialize the (x,y) coordinates of
the GeometricObject base and the double to initialize the radius. The
length() function should return the circle’s circumference and the area()
function nr?,

Is also derived from GeometricObject and has 3 point data members, p1,
p2, and p3. Its constructor should have three (point) arguments, to
initialize the data members. It also needs to initialize the
GeometricObject’s (X,y) coordinates. The (x,y) coordinate for a triangle

CIS27 - Programming in C++ 294

Appendix A - Assignments

should be the average of its x coordinates and the average of its y
coordinates. Add three private member functions, sidel(), side2(), side3()
to the class. They should each return a double length of a side. For
example, sidel1() should return the length of the side that is opposite point
pl. These functions will be useful for the length() and the area(). The
length() should return the triangle’s perimeter. Use the following
formulas for the area of a triangle:

s=%(a+b+c) (s is the semi-perimeter of a triangle)

Area = —\/s(s -a)(s-b)(s-c¢)

Use the main() below to test your program. The output should give you an indication of what is
expected.

int main (void)

{

int 1i;

Point P(0,0), Q(3,0), R(3,4);
P.DescribeYourself () ;

Line L(Q,R);

L. DescribeYourself ();
Circle C(P,3);

C. DescribeYourself ();
Triangle T (P,Q,R);

T. DescribeYourself ();

// polymorphism testing

}

GeometricObject* Obj[6]
Obj[0] = new Point(2,1)
)
)

Obj[1l] = new Point (8,1

Obj[2] = new Point (5,5

Obj[3] = new Line(P,Q);
Obj[4] = new Circle(P,2.0);
Obj[5] = new Triangle(P,Q,R);

for (i = 0; 1 < 6; i++) Obj[i]-> DescribeYourself();
for (1 = 0; i < 6; 1i++) delete Obj[i];

return 0;

*kkkkk Program Output *kkkkk

GeometricObject: 0x6alc4 - location = (0,0)
I am a point

GeometricObject: 0x6a060 - location = (3,2)
I am a line

Length=4

GeometricObject: 0x6a038 - location = (0,0)

CIS27 - Programming in C++ 295

Appendix A - Assignments

I am a circle

Area=28.2743 circumference=18.8496

GeometricObject:
I am a triangle

0x69fd4

Area=6 permeter=12

GeometricObject:
I am a point

GeometricObject:
I am a point

GeometricObject:
I am a point

GeometricObject:
I am a line
Length="?

GeometricObject:

I am a circle

GeometricObject:
I am a triangle

0x6cl160

0x6cl80

Ox6clal

0x6b100

0x6clcO

location

location

location

location

location

location

Ox6el00 - location

Area=? permeter=7??

(2,1.33333)

(2,1)

(8,1)

(5,5)

Extra Credit (1 point0) Add a constructors to the circle class, so that you can create a circle:
using a point and a line - the first point is the center, the circle is tangent to the line.

CIS27 - Programming in C++

296

Appendix A - Assignments

Exercise #12
This assignment will give you practice with inheritance and polymorphism.

1. Create an abstract Solid base class. It should consist of:

data members to represent the (x,y,z) coordinates of a solid in 3D space

at least one constructor

a function that displays the coordinates of a Solid object as (x,y,z)

pure virtual functions that:

e return the volume of the object

e return the surface area of the object

e return the type of the solid

e print “specialized” details about a Solid object (i.e. radius, height, width, ...)

a non-virtual function that prints all information about a Solid object (it should call the 5
functions listed above)

2. Derive from the Solid class the following classes:
RectangularSolid
This class should have three members: length, width, and height

Sphere
This class should have one member, radius.

Cylinder
This class should have two data members, radius and height.

Cone
This class should have two data members, radius and height.

3. From the RectangularSolid class, derive a Cube class. It does not have any data members.
It only needs a constructor, a type function, and a “print details” function.

You may need the following formulas for this assignment:

Solid Volume Surface Area
Rectangular Solid V=1wh A= 2(1lw + 1h +

wh
Sphere V = 4/3nr3 A = 4mr?
Cone V = 1/3mnr2h A = nrVr2 + h2 + mr2
Cylinder V = mr?h A = 2nr(h + 1)
Cube V = s3 A = 632

CIS27 - Programming in C++ 297

Appendix A - Assignments

Use the following main() as a final test of your program:

int main () {

}

* kK k kKK

RectangularSolid

Sphere
Cylinder

Co

ne

Cube

So

lid~*

// Rectangular Solid test

Ps
Ps

//
ps
Ps

//
ps
ps

//
Ps
ps

//
ps
ps
re

= &Rec;
->print();

Sphere test
= &Sph;
->print () ;

Cylinder test
= &Cyl ;
->print();

Cone test
= &Con ;
->print () ;

Cube test
= &Cub ;
->print () ;

turn 0O;

Program Output

* kK k kKK

~

~

~

~

~

DD DD DN

~

~

~

~

~

w w www

~

~

~

~

~

I am a rectangular solid located at (1,2,3)
length=4 width=5 height=6
volume=120 surface area=148

I am a sphere located at (1,2,3)

radius

=4

volume=268.082 surface area=???

I am a cylinder located at (1,2,3)
radius=4 height=5
volume=??? surface area=2??

I am a cone located at (1,2,3)
radius=4 height=5
volume=??? surface area=?2??

I am a cube located at (1,2,3)

side=4

volume=64 surface area=?2??

I T S TSN

CIS27 - Programming in C++

298

Appendix A - Assignments

Exercise #13

This assignment will give you practice in producing formatted output using C++ input/output
classes. Create a class consisting of an int, an unsigned, a long, a short, and a double. Generate
random numbers to assign to the members. Print 20 lines of output using the class. Each line
should be printed exactly as illustrated below. Of course, the numbers will not match since they
are random. The output specifications are:

The first column contains the int member left justified displayed in octal.

The second column contains the unsigned member left justified displayed in hex.
The third column contains the long member left justified displayed in decimal.
The fourth column contains the short member left justified displayed in hex.

The fifth column contains the double member right justified.

The sixth column contains the double member right justified.

The seventh column contains the double member right justified.

The integer types should be printed in a field of width 9, the doubles using a width of 12. Make
sure you match the base indicators and the precision of the doubles.

Note: for the scientific output shown in the last two columns, your compiler will print the
exponent as either a 2-digit or 3-digit number, but not both. You cannot control this. You will
have to figure out a way to massage the double value to produce one of the scientific outputs.

62436 0X22E8 2888 1889 426.0986 4.261e+002 4.26e+02
72062 0X29AF 7884 106c¢c 5.1463 5.146e+000 5.15e+00
47262 0X68ES8 19107 5a62 0.9017 9.017e-001 9.02e-01
31237 0X1A6C 29243 2cce 39.5479 3.955e+001 3.95e+01
13020 0X33FD 17339 459d 0.0789 7.890e-002 7.89%e-02
74524 0X7E67 8056 5b9%e 0.6746 6.746e-001 6.75e-01
45040 0X1842 21039 596 1.3779 1.378e+000 1.38e+00
14051 0X1995 1452 408c 1.8856 1.886e+000 1.89e+00
12706 0X24CE 17308 6bfe 0.0308 3.078e-002 3.08e-02
37534 0X66C5 21689 6e05 0.9871 9.871e-001 9.87e-01
15311 0X2AC5 15003 a8’ 3.0408 3.041e+000 3.04e+00
56020 0X8D1 3278 200b 0.0388 3.877e-002 3.88e-02
67351 0X23A1 12797 41d1 1.9757 1.976e+000 1.98e+00
76410 0X3908 21582 5a36 0.4780 4.780e-001 4.78e-01
13472 0X42C1 7242 7193 4.8966 4.897e+000 4.90e+00
35644 0X5EDA 16355 350a 2.4271 2.427e+000 2.43e+00
16706 0X7E32 23414 360d 1.0195 1.019e+000 1.02e+00
62433 0X3CC4 26845 667b 1.1618 1.162e+000 1.16e+00
16543 0X1ABC 3301 Seac 0.6685 6.685e-001 6.69%9e-01
57772 0X5E7E 28111 51be 9.0853 9.085e+000 9.09e+00

CIS27 - Programming in C++ 299

Appendix A - Assignments

Exercise #14

This assignment will give you practice with C++ input/output classes and file 1/0. Use the
following program specifications and use the following main() to test your program. You should
use the WordFile and the Dictionary classes described below, and any others you wish.

Here is the WordFile class. Write the 4 member functions. Add any others you desire. The
getNextWord() function should place the “next word to be read” in the buffer argument and
return it. If getNextWord() fails, it should return a null pointer.

class WordFile {
private:
fstream File;
public:
WordFile (const char* filename);
void addWord (const char* word);
void goToTopOfFile();
char* getNextWord (char* buffer);
}s

The Dictionary class should contain two members, an fstream object and an unsigned int, which
stores the number of words in the Dictionary. The Dictionary constructor should use a
WordFile& argument. This constructor should read the WordFile’s file into memory. Use
dynamic memory allocation to temporarily store the words, so they can be sorted. After sorting,
write them out to the new Dictionary file and clean up.

Add four more members functions to the Dictionary class, getNumWords(),
getDictionarySizelnBytes(), getMiddleWord() and find(). The function, getMiddleWord(),
should return the word that’s in the middle of the file. That is, if the file is 100 bytes, then the
function should return the word that begins on or before byte 50.

Add a friend operator<<() to the Dictionary class. This function should print out the Dictionary.

Use the main() below for the final testing of your program. It, and the sample program run
should give you more insight to the program. If you do not complete the program, turn in only
the functions and the parts of the program that run, along with the output. Do not turnin a
program that does not run.

Test your code thoroughly after you complete each function. Do not attempt the Dictionary class
until you WordFile class is complete.

int main () {
WordFile Words ("wordfile.txt");
char buffer[MaxWordSize];
// Read words into the Word file
cout << "Enter words for the Word file (“quit” to stop)\n";
while (cin.getline(buffer,MaxWordSize) &&strcmp (buffer,”quit”))
Words.addWord (buffer) ;
Dictionary Webster (Words) ;

CIS27 - Programming in C++ 300

Appendix A - Assignments

// Print the Dictionary

cout << Webster << endl;
// Print the Dictionary size

cout << "Dictionary size = " << Webster.getDictionarySizeInBytes() << endl;
// Print the word in the middle of the dictionary

cout << "The middle word is " << Webster.getMiddleWord (buffer) << endl;

// Search for words in the Dictionary
cout << "Enter words to search for in the Dictionary (“\quit\” to stop)\n";
cin.clear () ;
while (cin.getline(buffer,MaxWordSize) && strcmp (buffer,"quit")) {
cout << buffer << " is ";
if (Webster.find(buffer)) cout << "definitely ";
else cout << "NOT ";
cout << "in the Dictionary\n";
}
return 0;

}
*kkkkk Sample Run *kkkkk

Enter words for the Word file (enter "quit" to stop)

chimpanzee

whale

bald eagle

tiger

zebra

mouse

horse fly

mountain goat

baboon

quit

Dictionary Words:
baboon
bald eagle
chimpanzee
horse fly
mountain goat
mouse

Dictionary size = 86 <- Note this could be a different size
The middle word is ??? <- this may vary

Enter words to search for in the Dictionary ("quit" to stop)
elephant

elephant is NOT in the Dictionary

goat

goat 1s NOT in the Dictionary

baboon

baboon is definitely in the Dictionary

zebra

zebra is definitely in the Dictionary

mountain goat

mountain goat is definitely in the Dictionary

dog

dog is NOT in the Dictionary

quit

CIS27 - Programming in C++ 301

Appendix A - Assignments

Exercise #15
Read in the input file below and produce the report shown.

Input file

John, Doe, 123456789,20,21,22,23,16,19,16,50,75
Francisco,Washington, 987654321,10,0,20,13,18,19,16,30,70
Tom, Nguyen,111111111,18,23,24,25,17,22,20,38,90
Victoria,Black,333333333,22,21,22,21,20,22,21,45,64
Sally,Seinfield, 444444444,17,12,19,23,24,12,11,34,94
Sylvester,De La Rosa,555555555,25,25,24,20,25,25,21,44,80
George,0'Neill, 666666666,21,12,3,14,21,14,17,45,99
Sylvia, Smart,777777777,20,21,22,23,24,20,25,44,78

Judy, Yang, 888888888,16,19,22,24,25,20,25,45,100
Charles,Black,222222222,20,21,22,22,21,25,16,40,86

CIS27 Class Grades Report

Student Name --—- SSN --- ---- Lab Grades ---- Mid Fin Pts Perct G
Doe, John 123-45-6789 20 21 22 23 16 19 16 50 75 246 82.0% B
Washington, Francisc 987-65-4321 10 0 20 13 18 19 16 30 70 196 65.3% D
Nguyen, Tom 111-11-1111 18 23 24 25 17 22 20 38 90 260 86.7% B
Black, Victoria 333-33-3333 22 21 22 21 20 22 21 45 64 238 79.3% C
Seinfield, Sally 444-44-4444 17 12 19 23 24 12 11 34 94 234 78.0% C
De La Rosa, Sylveste 555-55-5555 25 25 24 20 25 25 21 44 80 269 89.7% B
0'Neill, George 666-66-6666 21 12 3 14 21 14 17 45 99 243 81.0% B
Smart, Sylvia 777=-77-7777 20 21 22 23 24 20 25 44 78 257 85.7% B
Yang, Judy 888-88-8888 16 19 22 24 25 20 25 45 100 280 93.3% A
Black, Charles 222=-22-2222 20 21 22 22 21 25 16 40 86 253 84.3% B

Program requirements

e Use C++ input/output techniques and file 1/0, no stdio. You should declare one ifstream and
one ofstream object.

e Create at least 3 classes:
1. Name consists of a first and last name.
2. StudentInfo consists of a Name, SSN, 7 lab grades, a midterm, final, and whatever else

you want.

3. Class consists of an array of StudentInfo or an array of Studentinfo pointers

e The rules for calculating points and grades are exactly like the 1% assignment or what was
stated on the course syllabus. Remember to discard the lowest lab grade, but not the last one.

e Use the same input file shown. You may get a copy of the data file in the ATC if you do not
want to type it in.

e Produce exactly the report, with the same spacing, formatting and text. Turn in a copy of the
report file along with your program listing.

e If you are unsure of any program detail, ask the instructor for clarification.

Extra Credit (1 point each)

1. Sort the report by Name (major sort by last name, minor sort by first name)

2. Handle a missing lab score instead of a 0. Use this record for Francisco Washington:
Francisco,Washington,987654321,10,,20,13,18,19,16,60,140

3. Change the lab grades in the input file to octal, but print them out as hexadecimal.

CIS27 - Programming in C++ 302

Appendix A - Assignments

Exercise #16

Purpose

The purpose of this assignment is
e To give you practice in using the C++ input/output classes and file 1/0.
e To give you practice in program planning, design and development.
e To solve a practical “real-world” problem.

Program Description

This program will track a portfolio consisting of three mutual funds over a ten year period. You
will invest $10,000 exactly 10 years prior to the date that you run your program. You will use
actual mutual fund historical data that you will download as input files to your program.

Requirements

Your must use a main() that is similar to the sample below. The “real work” should not be
performed in main().

Your program output file should “logically” match that of the sample output below. You will
probably use different mutual funds and run your program for different dates. You must display
the initial investment data for your portfolio, the value of the portfolio 5 years ago, 3 years ago, 1
year ago, at the beginning of the year and the current value.

You should turn in the program listing and your output file.

Your solution must contain at least 3 classes, one of which is a “date” class. The “date” class
must contain an overloaded insertion operator that “prints” a “date” in an “mm/dd/yy” format.
You are to use the actual downloaded mutual fund historical data. You may not edit this data.
You are to use the closing prices of the mutual on the date of interest. If that date is not a
“market open” date, then you must backup and get the previous closing price of the fund.

You must invest at least $3000 in each fund.

References

Yahoo finance page: http://finance.yahoo.com/

You can look up mutual fund data by entering the “ticker” symbol next to the Get Quotes button
at the top of the page. On the mutual fund “Summary” page, use the “Historical Prices” link on
the left side of the page to get the history. On the “Historical Prices” page, use the “Download to
Spreadsheet” link to download the mutual fund history to a file. Note, the download file is
named table.csv, so you need to give it a unique name, since you’ll need three different mutual
fund history files.

You can find lots of good funds on these sites:
http://bloomberg.com/apps/data?pid=invest_mutualfunds
http://www.Kiplinger.com/investing/funds/kip25/tables/index.php
http://www.smartmoney.com/top25funds/
http://www.morningstar.com/allanalyses/analysesLists.htm|?type=FO&fsection=all2000&Ipos=

Commentary
http://moneycentral.msn.com/investor/research/fundwelcome.asp?Funds=1

CIS27 - Programming in C++ 303

http://finance.yahoo.com/
http://bloomberg.com/apps/data?pid=invest_mutualfunds
http://www.kiplinger.com/investing/funds/kip25/tables/index.php
http://www.smartmoney.com/top25funds/
http://www.morningstar.com/allanalyses/analysesLists.html?type=FO&fsection=all2000&lpos=Commentary
http://www.morningstar.com/allanalyses/analysesLists.html?type=FO&fsection=all2000&lpos=Commentary
http://moneycentral.msn.com/investor/research/fundwelcome.asp?Funds=1

Appendix A - Assignments

Assumptions

Assume that the input data is reliable, that dates and the mutual fund closing prices are valid.
Assume that you do not have access to dividends or capital gains. There is no reinvestment.
You give all that money to charity (or the teacher).

Suggestions

Allow 4-12 hours to solve this problem. You will need more time for program planning and
analysis than the previous assignments.

Extra Credit

The student with the most valuable portfolio using “today’s” closing prices will receive 2 extra
credit points. In the event of a tie, only 1 point will be awarded. Remember, actual data must be
used for this, but you are free to run the program on different days. By completing the program
early, you can pick a day with a good market close.

Sample main()

int main ()

{
Date today;
Portfolio myPortfolio(today.nYearsBefore (10));
myPortfolio.addFund ("VTSMX",3333.33f,"c:/deanza/data/vtsmx.csv");
myPortfolio.addFund ("VGTSX",3333.33f,"c:/deanza/data/vgtsx.csv");
myPortfolio.addFund ("VBMFX",3333.34f,"c:/deanza/data/vbmfx.csv") ;
ofstream fout ("c:/deanza/data/ass9.out");
myPortfolio.report (today, fout);
return 0;

}

Sample Program Output File

Mutual Funds VTSMX VGTSX VBMEX Total
Initial Investment 06/06/99 3333.33 3333.33 3333.34 10000.00
Initial Shares 132.380 358.808 572.739

Value 5 years ago 06/06/04 3243.31 3519.91 4547 .55 11310.77
Value 3 years ago 06/06/06 3828.43 5098.67 4874.01 13801.11
Value 1 year ago 06/06/08 4314.27 6562.61 5544.11 16420.98
Value on January 1st 01/01/09 2953.40 3950.48 5715.93 12619.81
Value today 06/06/09 3060.63 4345.17 5738.84 13144.64

CIS27 - Programming in C++ 304

Index

Index
HIfdef ..o 240 INLHANIZEN .o 83
.. 127 INHNE oo 107
Il 4 overloaded...........ccoovvvvvininniien 80
- 30, 31, 53, 54 container relationship.......ccccccoovvvnieinene. 46
“has-a” relationship........cccccceviiiiiiiiennnn, 168 containMmeNnt..........ccoeeveveeeeneeie e 46, 102
S 5,8 conversion function...........cceeeeeeviiviieeenns 127
<FSIreaAM> ..o 233 (0101 | RS URURUURRRRN 4,5,8
<IOMANIP> oo 215 data hiding........ccocevevvieieiiiciccee 29, 32
<IOSEIEAM ... 203 data member...........ccoceevrennnnn 29, 31, 33, 46
> e 5,8 Dase ClassS........cccvvvveiviiiee e, 158
abstract Classc.ccovvvvviviiiine e 189 CONSE ottt 84
accessor function..........ccoccvvevveeiescieseene, 46 SEALIC e 108
access-SPeCIfiers.......cccvvevvvicvieece e, 30 deC.oiiiiieii e, 203, 215, 216
DAA() v 199 declaring variables ..o, 4
base class......... 158, 159, 161, 164, 170, 171 default argumentcccccoeeevveinennns 20, 78
basic_fstreamcccccveeviveviciiecciccs 224 default arguments.........cccccevevieenennns 20,21
basic_ifstreamccccoevviveiievicec, 224 default constructorccccceevvveevirennene, 102
basic_iStream.........cccceevveviveeiieiiie e, 200 delete................. 22,25, 26, 27, 63, 101, 182
basic_ofstreamc.ccccvevevieeiiciecnn, 224 delete []..cooeieeiieeieee e 101
DOOI ..o 6, 44 derived class.... 158, 159, 162, 165, 167, 170
boolalpha..........c.cccovveviiiieiiccec, 203, 215 destructor....... 62, 63, 64, 65, 66, 73, 75, 101
chaining functions...........cccccevvvenciennnn 107 VIFUAL ..o 183
CIN e 4,5,8 dynamic binding.........ccccoevveiiiicine, 174
class............. 2,29, 30, 31, 33, 34, 40, 44, 46 dynamically allocated memory..... 22, 24, 26
classes early bindingccccovevviieiece e, 174
ClOCK ... 38 EIIIPSIS ..o 127
Clear.....coovieiieceeecec e 233,234 encapsulation............cccoeveveiiececie e, 1,29
Clear() .ooveee e 199 ENALL..eoiie 215
ClOSE .o 234, 242 ENAS .. 215
ClOSE() e 233, 234 ENUM s 53
command-line compile...................... 61, 136 BOF() vereei e 199
COMMENT....eiiiee e 4 EXPHICIE. .. 103
COMPIIE ..o 61 extraction operator
conditional compilationccceee. 240 overloadingcccoceveiiienennnn 218, 219
const data membercccooeveeiieiienieenen. 84 FAll().veieee e 199
const member function...... 38, 44, 49, 51, 81 FHE 10 e, 223
constructor 62, 63, 64, 65, 66, 72, 73, 74, 75, FIXEA ..o 203, 215
82, 102 FIUSP....eeeieee e 215
base class..... 158, 159, 164, 167, 170, 171 FIUSPQ) o, 202
COPY ettt 74, 80, 82 TMEFlAgS ..o 203
defaultc..ccveenenn. 63, 74, 80, 82, 106 fmtflags.h...cooovei 203
derived class 159, 162, 165, 167, 170, 172 friend function 111, 112, 113, 120, 139, 219,
EXPHCIt...vviiiiciie e 103 221
initialization listcccocovviiiinennn 162 Friendship ..o 112
CIS27 - Programming in C++ 305

Index

MUtUAl ..o 120 NEW ..o 22,23, 24, 26, 27, 182
FStream.......ccovviiiie e 224 noboolalpha..........ccccceveiiiiiiiniiec 215
function overloadingcccccevvvevieennnne 129 non-exact matches...........ccecvvvevvereenenn, 129
GCOUNE() cvveveeieeneeeiee e 200 non-virtual functionc.ccc....... 174, 178
GELO) vereeri e 200, 211 Non-virtual function............c.ccceevevvennnee. 174
gethine.....ccoooveviveiiieiese, 200, 234, 241 NOShOWDASE ... 215
gethine() ..vocveveeeieeie e 211 NOShOWPOINT.......cccveviiieciee e 215
GOO0A() +-vvvrenrererie e 199 NOSNOWPOS........eeiviiiieiieieierie e 215
header file.........ccovvveieeiee e, 58 NOSKIPWS ..o 215
header fileS.........cccoveiiiiiie e 10 NOUNITDUT ..o 215
heap MEeMmMOrY.......c.ccoevveve e 22 NOUPPEICASE.vvveivreeeiiiieeriieeesiieeesieee e 215
NEX .., 203, 215, 216 (0] 0] 1< ST RRR 31
ITSEream ..o 224 base Class.......ccoceveveiirininns 160, 170, 173
[g1] £ TP 201 derived class................ 160, 166, 170, 173
inheritance.... 1, 29, 156, 158, 159, 161, 162, Obiject-oriented programming language 1

164 010! S 203, 215, 216

MUILIPIE .o 156 ofstream.........ccccovevviieii e 224, 233

[O1EAVZ: LSRR 158, 168 (0] 0110 DU UPRURRTRIN 234, 241

Protected.......ccovvevevieieee e 158 OPEN() cvrevreieee e 234

PUDIIC...cvviiiiieciee e 158 operator overloading137, 139, 140, 145, 148
initialization listccooveveennne 83, 84, 86 Operator overloadingc.ccc...... 142,143
inline functionccoccevveieec v, 37 OPErator<<........cccccoverieeriennnn 218, 219, 221
insertion operatorccccccevveveevesneennn. 221 OPEratOr>>.......cceiieiieiesiese e 219

overloadingcccccoeevvrunnee. 218, 219, 221 (1) 1 (=711 214
INStaNtiation...........cocvvevininierese e 103 overloaded functionccccceevrininnnenn 127
internaloooevieei e, 203, 215 overloaded functions............cccceveeivivieeenne 63
[0 LSHE: o] o PSSR 234 Overloaded increment operator............... 140
10522080 o 234 PEEK() c.veveieriesiesee e 201
10S::fMtFlagscovveveveee, 204 polymorphism.... 1, 174, 176, 178, 180, 185,
ios_base member functions................... 207 189
10S_Dase:iiN ..cooveveiieiiece e 234 PHVALE ..veeveciecee e 30, 31, 34
10S_DaSEII0UL ..o 234 Private inheritancecc.cccocevveieveenee. 168
TOSEIEAM ... 4 [01£0] 1010 1 o] 4 PSR 127
ISTIEAM ... 211 Protected.......ccoovvireiiiiceee e 30
late binding........cccovevieiiice, 174 PUBLIC...cceeiviiiiiiece e, 30, 31, 34
1] 203, 215 public inheritance............ 162, 165, 167, 172
MAIN() oo 11 pure virtual function............c..ccoceveeennn. 189
Manipulatorccooeveveicieicine 215, 216 PUL . 214
member function............... 29, 31, 33, 34, 37 PUL() e 202

(o0] 1 1) A 46, 47, 64, 66 PULDACK() .ovveiece e 201

INHNE .o 37 FASEALE ... 234

SEALIC ..o 109 PASTALE() cvveveereeee e 199
multi-file programscccccoeevevieiiieenen. 58 read......ccovveiieeiie e, 201, 238, 239
multiple inheritancecc.ccooeee 170, 171 FEAU() «.veveereeeesie e 201
mutable.........ccoooviii 51, 52 readsSome()....c.ecvveevieiiieiie e 201
NaMesPace Stdccevveveereerree e 10 reference variablesccoevevvcveeeenne 13,16
NESted ClaSSEScovvvrveriirieriiii e 55 FEFErENCES ..o 34
CIS27 - Programming in C++ 306

resetiosflags.........cccoovevviveiivernnnnn, 215, 216 SUDCIASSES.....cvveveciiecieee e 158
FIONT . 203, 215 SUPEICIASSES.....eeveiviiiiee e 158
SCIENtITIC...ccveiiei e, 203, 215 system command...........cccceevveieiieneennenn 241
scope resolution operator 30, 109 TeIlG o 233
SEEKY() cvverreerrerreerir e 228, 229 10511 (o USSR 229
SEEKP() v 228, 229 TEIIP o 233
SELDASE .. 215 10511 1o PSSR 229
SELE e 210 TS 106
SELFIl .o 215 tYPE CONVEISIONS......ccvereiieiireie e 152
SEtIOSTlags.ccvovveieiiiiii 215 UNGEE() v 201
SELPreCISION ..ovvevvecieecie e 215 unitbuf ... 203, 215
SEBIW . 215 UPPEICASE. ...ccvvirvrierieiiriesiee e 203, 215
SNOWDASEccvveereiiiiece e 203, 215 USING e cvveveete et 12
SNOWPOINE.......ooiiiiiiiecc e 203, 215 using namespace Std...........cccceverererennnn 12
SNOWPOS.....cveivieircie e 203, 215 Virtual destructorccoccevvevviieieennnns 182
SKIPWS vt 203, 215 virtual function............ceeeeee. 174,178, 180
StaCk MEMOIYcccoevveiieiice e 22 virtual inheritancecccoovevvieieennne 172
static bINAING........ccocoviviiiecece 174 WIESEIEAM ...t 224
static data memberccoceevenenne. 108, 109 WITSETEAM. ..o 224

inheritance ofcccccvevevievececeee, 158 WOTSIIEAM ... 224
static member function............ccccoeeevenine 109 WITEE oo 214, 239
StatiC MEMOIYoviiveiiiiiieee e 22 WITEE() e 202
SEIEAMSIZE. ... 200 WS oottt sttt 215
CIS27 - Programming in C++ 307

